Основные сведения о строении атома: характеристики, особенности и формула. Из каких элементарных частиц состоит атом

Атом, как обособленная единица, построен из ядра, заряженного положительным и из электронов, несущих отрицательных заряд. Вот из чего состоит атом.

В его центре располагается ядро, которое образуют ещё более мелкие частицы - протоны и нейтроны. Относительно радиуса всего атома радиус ядра примерно в сто тысяч раз меньше. Плотность ядра чрезвычайно высока.

Стабильная ядра с положительным зарядом - это протон. Нейтрон - это элементарная частица, не обладающая электрическим зарядом, с массой, приблизительно равной массе протона. Масса ядра складывается, соответственно, из общей массы протонов и нейтронов, совокупность которых в составе ядра сокращённо называют нуклоном. Эти нуклоны в ядре связаны уникальными Число протонов в атоме равно определённому в атомной оболочке и, как следствие, составляет основу для химических свойств атома.

Электрон как мельчайшая частица вещества несёт в себе элементарный отрицательный электрический постоянно вращаются вокруг ядра по определённым орбитам подобно вращению планет вокруг Солнца. Таким образом, на вопрос о том, из чего состоит атом, можно дать следующий ответ: из элементарных частиц с положительными, отрицательными и нейтральными зарядами.

Существует следующая закономерность: размер атома зависит от размера его электронной оболочки, или высоты орбиты. В рамках ответа на вопрос о том, из чего состоит атом, можно уточнить, что электроны способны как добавляться, так и удаляться из атома. Это обстоятельство превращает атом в положительный ион или, соответственно, в отрицательный. А сам процесс трансформации элементарной химической частицы называют ионизацией.

В сконцентрирован большой запас энергии, которая способна высвобождаться во время ядерных реакций. Такие реакции, как правило, возникают при столкновении атомных ядер с другими элементарными частицами или с ядрами иных химических элементов. В результате способны образовываться новые ядра. Например, реакция способна осуществить переход нейтрона в протон, при этом из ядра атома удаляется бета-частица, иначе - электрон.

Качественный переход в центре атома протона в нейтрон способен осуществляться двумя вариантами. В первом случае из ядра выходит частица с массой, которая равна массе электрона, однако с положительным зарядом, называющаяся позитроном (так называемый позитронный распад). Второй вариант предполагает захват ядром атома одного из ближайшей к нему электронов с К-орбиты (К-захват). Так химические элементы превращаются из одного в другой благодаря тому, из чего состоит атом.

Бывают такие состояния образовавшегося ядра, когда оно обладает избытком энергии, иначе говоря, оно находится в возбуждённом состоянии. В случае перехода в естественное состояние ядро выделяет чрезмерную энергию в виде порции электромагнитного излучения с очень малой длиной волны - так образуется гамма-излучение. Та энергия, что выделяется при осуществляемых ядерных реакциях, находит практическое применение в ряде отраслей науки и промышленности.

Наш мир таит в себе много тайного и неразгаданного, потому что физические и химические процессы поистине удивительны. Но ученые постоянно стремились понять сущность материи, из которой соткана жизнь во вселенной. Этот вопрос часто стал возникать у человечества на протяжении долгого времени. Эта статья расскажет, что такое простой атом, из каких элементарных частиц он состоит, а также как ученые открыли существование наименьшей части химического элемента.

Что же такое атом, и как его открыли

Атом - самая малая часть химического элемента. Атомы различных элементов отличаются количеством протонов и нейтронов.

Сравнительный размер атома гелия и его ядра

Первыми, кто начал серьезно задумываться над тем, из чего же состоят все предметы, стали древние греки. Кстати, слово «атом» пришло из греческого языка и в переводе означает «неделимый». Греки считали, что рано или поздно останется такая частица, которую невозможно будет поделить. Но их рассуждения были скорее умозрительными, нежели научными, так что нельзя говорить о том, что этот древний народ был первым, кто сделал великие открытия о существовании мелких частиц.

Рассмотрим наиболее ранние представления о том, что такое атом.

Древнегреческий философ Демокрит предполагал, что основные параметры любого вещества - форма и масса, и что любое вещество состоит из мелких частиц. Демокрит привел пример с огнем: если он обжигает, то частицы, из которых он состоит, являются острыми. У воды, наоборот, гладкие, так как она способна течь. А состояние частиц твердых предметов, по его мнению, шероховатое, так как они способны напрочь скрепляться друг с другом. Также Демокрит был уверен в том, что душа человека состоит из атомов.

Интересный факт: если до XIX века вопросом об атоме занимались только философы, то Джон Дальтон стал первым экспериментатором, кто занялся изучением мелких частиц. В процессе опытов он выяснил, что атомы имеют разную массу, а также разные свойства. Кстати, изучать расположение атомов в молекулах конкретных веществ гораздо интереснее, если наблюдать за химическими реакциями, которые протекают при проведении опытов . Труды Дальтона хоть и не объяснили, что такое атом в целом, зато дали напутствие для некоторых других ученых.


Атомы и молекулы, изображенные Джоном Дальтоном (1808 год)

В 1904 году Джон Томсон выдвинул предположение о модели атома: ученый считал, что атом состоит из положительно заряженной субстанции, внутри которой расположены отрицательно заряженные корпускулы. Проблема предположения в том, что Томпсон стремился с помощью собственной модели рассмотреть спектральные линии элементов, но его эксперименты стали не особо получаться.

В то же время японский физик Хатаро Нагаока допустил, что атом похож на планету Сатурн: якобы состоит из ядра с положительным зарядом и электронов, которые вокруг него вращаются. Но его модель атома оказалась не совсем правильной.

В 1911 году ученый Резерфорд выдвинул другое предположение об устройстве атома. Результат его гипотез стал ошеломительным: сейчас в современной науке во многом полагаются на открытие этого физика.

В 1913 году Нильс Бор выдвинул полуклассическую теорию устройства атома, основываясь на трудах Резерфорда.

Создание модели атома Резерфорда

Давайте рассмотрим эту модель, потому что она подробно описывает некоторые свойства атома. Как уже говорилось ранее, Эрнест Резерфорд, «отец» ядерной физики, начал работать над моделью атома в 1911 году. Нужный результат физик начал получать, когда стал опровергать модель атома Томсона. На помощь ученому пришел эксперимент по рассеиванию альфа-частиц Гейгера и Марсдена. Ученый предположил, что в атоме есть очень маленькое положительно заряженное ядро. Эти доводы помогли при создании модели атома, которая похожа на солнечную систему, отчего ей было дано название «Планетарная модель атома» .


Планетарная модель атома: ядро (красное) и электроны (зелёные)

В центре атома располагается ядро, которое содержит в себе практически всю массу атома и имеет положительный заряд. Ядро состоит из протонов и нейтронов. Протоны - элементарные частицы с положительным зарядом, а нейтроны - элементарные частицы, не имеющие заряда. Вокруг ядра, подобно планетам солнечной системы, вращаются электроны.

АТОМ [французский atome, от латинского atomus, от греческого?τομος (ουσ?α) - неделимая (сущность)], частица вещества, наименьшая часть химического элемента, являющаяся носителем его свойств. Атомы каждого элемента индивидуальны по строению и свойствам и обозначаются химическими символами элементов (например, атом водорода - Н, железа - Fe, ртути - Hg, урана - U и т. д.). Атомы могут существовать как в свободном состоянии, так и в связанном (смотри Химическая связь). Всё многообразие веществ обусловлено различными сочетаниями атомов между собой. Свойства газообразных, жидких и твёрдых веществ зависят от свойств составляющих их атомов. Все физические и химические свойства атома определяются его строением и подчиняются квантовым законам. (Об истории развития учения об атоме смотри в статье Атомная физика.)

Общая характеристика строения атомов . Атом состоит из тяжёлого ядра, обладающего положительным электрическим зарядом, и окружающих его лёгких электронов с отрицательными электрическими зарядами, образующих электронные оболочки атома. Размеры атома определяются размерами его внешней электронной оболочки и велики по сравнению с размерами ядра атома. Характерные порядки диаметров, площадей поперечного сечения и объёмов атома и ядра составляют:

Атом 10 -8 см 10 -16 см 2 10 -24 см 3

Ядро 10 -12 см 10 -24 см 2 10 -36 см 3

Электронные оболочки атома не имеют строго определённых границ, и значения размеров атома в большей или меньшей степени зависят от способов их определения.

Заряд ядра - основная характеристика атома, обусловливающая его принадлежность определённому элементу. Заряд ядра всегда является целым, кратным положительному элементарному электрическому заряду, равному по абсолютному значению заряду электрона -е. Заряд ядра равен +Ze, где Z - порядковый номер (атомный номер). Z= 1, 2, 3,... для атомов последовательных элементов в периодической системе химических элементов, то есть для атомов Н, Не, Li, .... В нейтральном атоме ядро с зарядом +Ze удерживает Z электронов с общим зарядом -Ze. Атом может потерять или присоединить к электронов и стать положительным или отрицательным ионом (к = 1, 2, 3, ... - кратность его ионизации). К атому определённого элемента часто относят и его ионы. При написании ионы отличают от нейтрального атома индексом к + и к - ; например, О - нейтральный атом кислорода, О + , О 2+ , О 3+ , ..., О 8+ , О - , О 2- - его положительные и отрицательные ионы. Совокупность нейтрального атома и ионов других элементов с тем же числом электронов образует изоэлектронный ряд, например ряд водородоподобных атомов Н, Не + , Li 2+ , Ве 3+ ,... .

Кратность заряда ядра атома элементарному заряду е получила объяснение на основании представлений о строении ядра: Z равно числу протонов в ядре, заряд протона равен +е. Масса атома возрастает с увеличением Z. Масса ядра атома приближённо пропорциональна массовому числу А - общему числу протонов и нейтронов в ядре. Масса электрона (0,91 · 10 -27 г) значительно меньше (примерно в 1840 раз) массы протона или нейтрона (1,67?10 -24 г), поэтому масса атома в основном определяется массой его ядра.

Атомы данного элемента могут отличаться массой ядра (число протонов Z постоянно, число нейтронов А-Z может меняться); такие разновидности атомов одного и того же элемента называются изотопами. Различие массы ядра почти не сказывается на строении электронных оболочек данного атома, зависящем от Z, и свойствах атома. Наибольшие отличия в свойствах (изотопные эффекты) получаются для изотопов водорода (Z = 1) из-за большой разницы в массах обычного лёгкого атома водорода (А = 1), дейтерия (А = 2) и трития (А= 3).

Масса атома изменяется от 1,67 ?10 -24 г (для основного изотопа атом водорода, Z=1, А=1) до примерно 4?10 -22 г (для атомов трансурановых элементов). Наиболее точные значения масс атомов могут быть определены методами масс-спектроскопии. Масса атома не равна в точности сумме массы ядра и масс электронов, а несколько меньше - на дефект массы ΔM = W/c 2 , где W - энергия образования атома из ядра и электронов (энергия связи), с - скорость света. Эта поправка порядка массы электрона m e для тяжёлых атомов, а для лёгких пренебрежимо мала (порядка 10 -4 m e).

Энергия атома и её квантование . Благодаря малым размерам и большой массе атомное ядро можно приближённо считать точечным и покоящимся в центре масс атома (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс атома мала по сравнению со скоростями движения электронов). Соответственно атом можно рассматривать как систему, в которой N электронов с зарядами — е движутся вокруг неподвижного притягивающего центра. Движение электронов в атоме происходит в ограниченном объёме, то есть является связанным. Полная внутренняя энергия атома Е равна сумме кинетических энергий Т всех электронов и потенциальной энергии U - энергии притяжения их ядром и отталкивания друг от друга.

Согласно теории атома, предложенной в 1913 году Нильсом Бором, в атоме водорода один электрон с зарядом -е движется вокруг неподвижного центра с зарядом +е. В соответствии с классической механикой кинетическая энергия такого электрона равна

где v - скорость, p = m e v - количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии кулоновского притяжения электрона ядром) равна

и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой, неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U(r) при r→∞ принято за нуль. При отрицательных значениях полной энергии Е = Т + U < 0 движение электрона является связанным: оно ограничено в пространстве значениями r=r мaкc . При положительных значениях полной энергии Е = Т + U > 0 движение электрона является свободным - он может уйти на бесконечность с энергией Е = Т = (1/2)m е v 2 , что соответствует ионизованному атому водорода Н + . Таким образом, нейтральный атом водорода - система электростатически связанных ядра и электрона с энергией Е< 0.

Полная внутренняя энергия атома Е - его основная характеристика как квантовой системы (смотри Квантовая механика). Атом может длительно находиться лишь в состояниях с определённой энергией - стационарных (неизменных во времени) состояниях. Внутренняя энергия квантовой системы, состоящей из связанных микрочастиц (в том числе атома), может принимать одно из дискретного (прерывного) ряда значений

Каждому из этих «дозволенных» значений энергии соответствует одно или несколько стационарных квантовых состояний. Промежуточными значениями энергии (например, лежащими между Е 1 и Е 2 , Е 2 и Е 3 , и т.д.) система обладать не может, о такой системе говорят, что её энергия квантована. Любое изменение Е связано с квантовым (скачкообразным) переходом системы из одного стационарного квантового состояния в другое (смотри ниже).

Возможные дискретные значения (3) энергии атома графически можно изобразить по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии, где каждому значению энергии соответствует прямая, проведённая на высоте E i , i= 1, 2, 3, ... (рис. 1). Самый нижний уровень E 1 , соответствующий наименьшей возможной энергии атома, называется основным, а все остальные (E i >E 1), i = 2, 3, 4, ...) — возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные возбуждённые состояния из основного) необходимо возбудить систему - сообщить ей извне энергию E i -E 1 .

Квантование энергии атома является следствием волновых свойств электронов. Согласно принципу корпускулярно-волнового дуализма, движению микрочастицы массы m со скоростью v соответствует длина волны λ = h/mv, где h - постоянная Планка. Для электрона в атоме λ порядка 10 -8 см, то есть порядка линейных размеров атома, и учёт волновых свойств электрона в атоме является необходимым. Связанное движение электрона в атоме схоже со стоячей волной, и его следует рассматривать не как движение материальной точки по траектории, а как сложный волновой процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны λ (и, следовательно, частоты колебаний v). Согласно квантовой механике, энергия атома Е связана с v соотношением Е = hν и поэтому может принимать лишь определённые значения. Свободное, не ограниченное в пространстве поступательное движение микрочастицы, например движение электрона, оторванного от атома (с энергией Е> 0), сходно с распространением бегущей волны в неограниченном объёме, для которой возможны любые значения λ (и v). Энергия такой свободной микрочастицы может принимать любые значения (не квантуется, имеет непрерывный энергетический спектр). Такая непрерывная последовательность соответствует ионизованному атому. Значение Е ∞ = 0 соответствует границе ионизации; разность Е ∞ —Е 1 = Е ион называется энергией ионизации (смотри в статье Ионизационный потенциал); для атома водорода она равна 13,6 эВ.

Распределение электронной плотности . Точное положение электрона в атоме в данный момент времени установить нельзя вследствие неопределенностей соотношения. Состояние электрона в атоме определяется его волновой функцией, определённым образом зависящей от его координат; квадрат модуля волновой функции характеризует плотность вероятности нахождения электрона в данной точке пространства. Волновая функция в явном виде является решением Шрёдингера уравнения.

Таким образом, состояние электрона в атоме можно характеризовать распределением в пространстве его электрического заряда с некоторой плотностью - распределением электронной плотности. Электроны как бы «размазаны» в пространстве и образуют «электронное облако». Такая модель правильнее характеризует электроны в атоме, чем модель точечного электрона, движущегося по строго определённым орбитам (в теории атома Бора). Вместе с тем каждой такой боровской орбите можно сопоставить конкретное распределение электронной плотности. Для основного уровня энергии E 1 электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии Е 2 , Е 3 , Е 4 ... она распределяется на всё больших средних расстояниях от ядра. В многоэлектронном атоме электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов с ядром во внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами.

Учёт спина электрона и спина ядра . В теории атома весьма существен учёт спина электрона - его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан сто собственный (спиновый) магнитный момент. Поэтому в атоме необходимо учитывать, наряду с электростатическими взаимодействиями, и магнитные взаимодействия, определяемые спиновым магнитным моментом и орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенно влияние спина в многоэлектронных атомах: от спина электронов зависит заполнение электронных оболочек атома определённым числом электронов.

Ядро в атоме также может обладать собственным механическим моментом - ядерным спином, с которым связан ядерный магнитный момент в сотни и тысячи раз меньший электронного. Существование спинов приводит к дополнительным, очень малым взаимодействиям ядра и электронов (смотри ниже).

Квантовые состояния атома водорода . Важнейшую роль в квантовой теории атома играет теория простейшего одноэлектронного атома, состоящего из ядра с зарядом +Ze и электрона с зарядом -е, то есть теория атома водорода Н и водородоподобных ионов Не + , Li 2+ , Ве 3+ ,..., называемая обычно теорией атома водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном атоме. Задача о многоэлектронном атоме решается лишь приближённо; при этом исходят из результатов решения задачи об одноэлектронном атоме.

Энергия одноэлектронного атома в нерелятивистском приближении (без учёта спина электрона) равна

целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии - уровни энергии - и называется главным квантовым числом, R - постоянная Ридберга, равная 13,6 эВ. Уровни энергии атома сходятся (сгущаются) к границе ионизации Е ∞ = 0, соответствующей n =∞. Для водородоподобных ионов изменяется (в Z 2 раз) лишь масштаб значений энергий. Энергия ионизации водородоподобного атома (энергия связи электрона) равна (в эВ)

что даёт для Н, Не + , Li 2+ , ... значения 13,6эВ, 54,4 эВ, 122,4 эВ, ... .

Основная формула (4) соответствует выражению U(r) = -Ze 2 /r для потенциальной энергии электрона в электрическом поле ядра с зарядом +Ze. Эта формула была впервые выведена Н. Бором путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r и является точным решением уравнения Шрёдингера для такой системы. Уровням энергии (4) соответствуют орбиты радиуса

где постоянная а 0 = 0,529·10 -8 см = = 0,529 А - радиус первой круговой орбиты атома водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n 2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с атомом водорода. Релятивистское описание атома водорода с учётом спина электрона даётся Дирака уравнением.

Согласно квантовой механике, состояние атома водорода полностью определяется дискретными значениями четырёх физических величин: энергии Е; орбитального момента М l (момента количества движения электрона относительно ядра); проекции М lz орбитального момента на произвольно выбранное направление z; проекции M sz спинового момента (собственного момента количества движения электрона M s). Возможные значения этих физических величин, в свою очередь, определяются квантовыми числами n, l, m l , m s соответственно. В приближении, когда энергия атома водорода описывается формулой (4), она определяется только главным квантовым числом n, принимающим целочисленные значения 1, 2, 3, ... . Уровню энергии с заданным n соответствует несколько состояний, различающихся значениями орбитального (азимутального) квантового числа l = 0, 1, ..., n-1. Состояния с заданными значениями n и l принято обозначать как 1s, 2s, 2р, 3s, ..., где цифры указывают значение n, а буквы s, р, d, f (дальше по латинскому алфавиту) - соответственно значения l = 0, 1, 2, 3. При заданных n и l число различных состояний равно 2(2l + 1) - числу комбинаций значений магнитного орбитального квантового числа m l магнитного спинового числа m s (первое принимает 2l + 1 значений, второе - 2 значения). Общее число различных состояний с заданными n и l получается равным 2n 2 . Таким образом, каждому уровню энергии атома водорода соответствует 2,8, 18,…2n 2 (при n= 1, 2, 3, ...) различных стационарных квантовых состояний. Если уровню энергии соответствует лишь одно квантовое состояние, то его называют невырожденным, если два или более - вырожденным (смотри Вырождение в квантовой теории), а число таких состояний g называется степенью или кратностью вырождения (для невырожденных уровней энергии g=1). Уровни энергии атома водорода являются вырожденными, а их степень вырождения g n = 2n 2 .

Для различных состояний атома водорода получается и разное распределение электронной плотности. Оно зависит от квантовых чисел n, l и При этом электронная плотность для s-состояний (l=0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l>0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний атома водорода с n = 1, 2, 3 показано на рисунке 2; размеры «электронного облака» растут в соответствии с формулой (6) пропорционально n2 (масштаб на рисунке 2 уменьшается при переходе от n = 1 к n = 2 и от n = 2 к n = 3). Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами n, l, m l и m s , что и в атоме водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз.

Действие на атом внешних полей . Атом как электрическая система во внешнем электрическом и магнитном полях приобретает дополнительную энергию. Электрическое поле поляризует атом - смещает электронные облака относительно ядра (смотри Поляризуемость атомов, ионов и молекул), а магнитное поле ориентирует определённым образом магнитный момент атома, связанный с движением электрона вокруг ядра (с орбитальным моментом M l) и его спином. Различным состояниям атома водорода с той же энергией Е n во внешнем поле соответствуют разные значения дополнительной энергии ΔЕ, и вырожденный уровень энергии E n расщепляется на ряд подуровней. Как расщепление уровней энергии в электрическом поле - Штapкa эффект, - так и их расщепление в магнитном поле - Зеемана эффект - пропорциональны напряжённостям соответствующих полей.

К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри атома. Для атома водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие - взаимодействие спинового и орбитального моментов электрона; оно обусловливает так называемую тонкую структуру уровней энергии — расщепление возбуждённых уровней E n (при n>1) на подуровни. Для всех уровней энергии атома водорода наблюдается и сверхтонкая структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами.

Электронные оболочки многоэлектронных атомов . Теория атома, содержащих 2 или более электронов, принципиально отличается от теории атома водорода, так как в таком атоме имеются взаимодействующие друг с другом одинаковые частицы - электроны. Взаимное отталкивание электронов в многоэлектронном атоме существенно уменьшает прочность их связи с ядром. Например, энергия отрыва единственного электрона в ионе гелия (Не +) равна 54,4 эВ, в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эВ. Для внешних электронов более тяжёлых атомов уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Важную роль в многоэлектронных атомах играют свойства электронов как одинаковых микрочастиц (смотри Тождественности принцип), обладающих спином s = 1/2, для которых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что приводит к образованию электронных оболочек атома, заполняющихся строго определёнными числами электронов.

Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях атома в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью квантовых чисел n, l, m l и m s , аналогично электрону в атоме водорода. При этом энергия электрона оказывается зависящей не только от n, как в атоме водорода, но и от l; от m l и m s она по-прежнему не зависит. Электроны с данными n и l в многоэлектронном атоме имеют одинаковую энергию и образуют определённую электронную оболочку. Такие эквивалентные электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и l, символами ns, nр, nd, nf, ... (для 1 = 0, 1, 2,3,...) и говорят о 2р-электронах, 3s-о6олочках и т.п.

Согласно принципу Паули, любые 2 электрона в атоме должны находиться в различных квантовых состояниях и, следовательно, отличаться хотя бы одним из четырёх квантовых чисел n, l, m l и m s , а для эквивалентных электронов (n и l одинаковы) - значениями m l и m s . Число пар m l , m s , т. е. число различных квантовых состояний электрона с заданными n и l, и есть степень вырождения его уровня энергии g l = 2 (2l+1) = 2, 6, 10, 14, ... . Оно определяет число электронов в полностью заполненных электронных оболочках. Таким образом, s-, р-, d-, f-, ... оболочки заполняются 2, 6, 10, 14, ... электронами, независимо от значения n. Электроны с данным n образуют слой, состоящий из оболочек с l = 0, 1, 2, ..., n - 1 и заполняемый 2n 2 электронами, так называемый К- , L-, М, N-слой. При полном заполнении имеем:

В каждом слое оболочки с меньшими l характеризуются большей электронной плотностью. Прочность связи электрона с ядром уменьшается с увеличением n, а при заданном n — с увеличением l. Чем слабее связан электрон в соответствующей оболочке, тем выше лежит его уровень энергии. Ядро с заданным Z присоединяет электроны в порядке уменьшения прочности их связи: сначала два электрона 1s, затем два электрона 2s, шесть электронов 2р и т. д. Атому каждого химического элемента присуще определённое распределение электронов по оболочкам - его электронная конфигурация, например:

(число электронов в данной оболочке указывается индексом справа сверху). Периодичность в свойствах элементов определяется сходством внешних электронных оболочек атома. Например, нейтральные атомы Р, As, Sb, Bi (Z = 15, 33, 51, 83) имеют по три р-электрона во внешней электронной оболочке, подобно атому N, и схожи с ним по химическим и многим физическим свойствам.

Каждый атом характеризуется нормальной электронной конфигурацией, получающейся, когда все электроны в атоме связываются наиболее прочно, и возбуждёнными электронными конфигурациями, когда один или несколько электронов связаны более слабо - находятся на более высоких уровнях энергии. Например, для атома гелия наряду с нормальной 1s2 возможны возбуждённые электронные конфигурации: 1s2s, 1s2р, ... (возбуждён один электрон), 2s 2 , 2s2р, ... (возбуждены оба электрона). Определённой электронной конфигурации соответствует один уровень энергии атома в целом, если электронные оболочки целиком заполнены (например, нормальная конфигурация атома Ne 1s 2 2s 2 2р 6), и ряд уровней энергии, если имеются частично заполненные оболочки (например, нормальная конфигурация атома азота 1s 2 2s 2 2р 3 для которой оболочка 2р заполнена наполовину). При наличии частично заполненных d- и f-оболочек число уровней энергии, соответствующих каждой конфигурации, может достигать многих сотен, так что схема уровней энергии атома с частично заполненными оболочками получается очень сложной. Основным уровнем энергии атома является самый нижний уровень нормальной электронной конфигурации.

Квантовые переходы в атоме . При квантовых переходах атом переходит из одного стационарного состояния в другое - с одного уровня энергии на другой. При переходе с более высокого уровня энергии E i на более низкий Е к атом отдаёт энергию E i - E k , при обратном переходе получает её. Как для любой квантовой системы, для атома квантовые переходы могут быть двух типов: с излучением (оптические переходы) и без излучения (безызлучательные, или неоптические, переходы). Важнейшая характеристика квантового перехода - его вероятность, определяющая, как часто этот переход может происходить.

При квантовых переходах с излучением атом поглощает (переход Е к → E i) или испускает (переход E i →Е к) электромагнитное излучение. Электромагнитная энергия поглощается и испускается атомом в виде кванта света - фотона, - характеризуемого определённой частотой колебаний v, согласно соотношению:

где hv - энергия фотона. Соотношение (7) представляет собой закон сохранения энергии для микроскопических процессов, связанных с излучением.

Атом в основном состоянии может только поглощать фотоны, а в возбуждённых состояниях может, как поглощать, так и испускать их. Свободный атом в основном состоянии может существовать неограниченно долго. Продолжительность пребывания атома в возбуждённом состоянии (время жизни этого состояния) ограничена, атом спонтанно (самопроизвольно), частично или полностью теряет энергию возбуждения, испуская фотон и переходя на более низкий уровень энергии; наряду с таким спонтанным испусканием возможно и вынужденное испускание, происходящее, подобно поглощению, под действием фотонов той же частоты. Время жизни возбуждённого атома тем меньше, чем больше вероятность спонтанного перехода, для атома водорода оно порядка 10 -8 с.

Совокупность частот v возможных переходов с излучением определяет атомный спектр соответствующего атома: совокупность частот переходов с нижних уровней на верхние - его спектр поглощения, совокупность частот переходов с верхних уровней на нижние - спектр испускания. Каждому такому переходу в атомном спектре соответствует определённая спектральная линия частоты v.

При безызлучательных квантовых переходах атом получает или отдаёт энергию при взаимодействии с другими частицами, с которыми он сталкивается в газе или длительно связан в молекуле, жидкости или твёрдом теле. В газе атом можно считать свободным в промежутках времени между столкновениями; во время столкновения (удара) атом может перейти на более низкий или высокий уровень энергии. Такое столкновение называется неупругим (в противоположность упругому столкновению, при котором изменяется только кинетическая энергия поступательного движения атома, а его внутренняя энергия остаётся неизменной). Важный частный случай - столкновение свободного атома с электроном; обычно электрон движется быстрее атома, время столкновения очень мало и можно говорить об электронном ударе. Возбуждение атома электронным ударом является одним из методов определения его уровней энергии.

Химические и физические свойства атома . Большинство свойств атома определяется строением и характеристиками его внешних электронных оболочек, в которых электроны связаны с ядром сравнительно слабо (энергии связи от нескольких эВ до нескольких десятков эВ). Строение внутренних оболочек атома, электроны которых связаны гораздо прочнее (энергии связи в сотни, тысячи и десятки тысяч эВ), проявляется лишь при взаимодействиях атома с быстрыми частицами и фотонами больших энергий (более сотен эВ). Такие взаимодействия определяют рентгеновские спектры атома и рассеяние быстрых частиц (смотри Дифракция частиц). От массы атома зависят его механические свойства при движении атома как целого - количество движения, кинетическая энергия. От механических и связанных с ними магнитных и электрических моментов атома зависят различные резонансные и другие физические свойства атома (смотри Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс).

Электроны внешних оболочек атома легко подвергаются внешним воздействиям. При сближении атомов возникают сильные электростатические взаимодействия, которые могут приводить к образованию химической связи. Более слабые электростатические взаимодействия двух атомов проявляются в их взаимной поляризации - смещении электронов относительно ядер, наиболее сильном для слабо связанных внешних электронов. Возникают поляризационные силы притяжения между атомами, которые надо учитывать уже на больших расстояниях между ними. Поляризация атома происходит и во внешних электрических полях; в результате уровни энергии атома смещаются и, что особенно важно, вырожденные уровни энергии расщепляются (эффект Штарка). Поляризация атома может возникнуть под действием электрического поля световой (электромагнитной) волны; она зависит от частоты света, что обусловливает зависимость от неё и показателя преломления (смотри Дисперсия света), связанного с поляризуемостью атома. Тесная связь оптических характеристик атома с его электрическими свойствами особенно ярко проявляется в его оптических спектрах.

Магнитные свойства атомов определяются в основном строением их электронных оболочек. Магнитный момент атома зависит от его механического момента (смотри Магнитомеханическое отношение), в атоме с полностью заполненными электронными оболочками он равен нулю, так же, как и механический момент. Атомы с частично заполненными внешними электронными оболочками обладают, как правило, отличными от нуля магнитными моментами и являются парамагнитными. Во внешнем магнитном поле все уровни атомов, у которых магнитный момент не равен нулю, расщепляются - имеет место эффект Зеемана. Все атомы обладают диамагнетизмом, который обусловлен возникновением у них магнитного момента под действием внешнего магнитного поля (так называемого индуцированного магнитного момента, аналогичного электрическому дипольному моменту атома).

При последовательной ионизации атома, то есть при отрыве его электронов, начиная с самых внешних в порядке увеличения прочности их связи, соответственно изменяются все свойства атома, определяемые его внешней оболочкой. Внешними становятся всё более прочно связанные электроны; в результате сильно уменьшается способность атома поляризоваться в электрическом поле, увеличиваются расстояния между уровнями энергии и частоты оптических переходов между этими уровнями (что приводит к смещению спектров в сторону всё более коротких длин волн). Ряд свойств обнаруживает периодичность: сходными оказываются свойства ионов с аналогичными внешними электронами; например, N 3+ (два электрона 2s) обнаруживают сходство с N 5+ (два электрона 1s). Это относится к характеристикам и относительному расположению уровней энергии и к оптическим спектрам, к магнитным моментам атома и так далее. Наиболее резкое изменение свойств происходит при удалении последнего электрона из внешней оболочки, когда остаются лишь полностью заполненные оболочки, например при переходе от N 4+ к N 5+ (электронные конфигурации 1s 2 2s и 1s 2). В этом случае ион наиболее устойчив и его полный механический и полный магнитный моменты равны нулю.

Свойства атома, находящегося в связанном состоянии (например, входящего в состав молекулы), отличаются от свойств свободного атома. Наибольшие изменения претерпевают свойства атома, определяемые самыми внешними электронами, принимающими участие в присоединении данного атома к другому. Вместе с тем свойства, определяемые электронами внутренних оболочек, могут практически не измениться, как это имеет место для рентгеновских спектров. Некоторые свойства атома могут испытывать сравнительно небольшие изменения, по которым можно получить информацию о характере взаимодействий связанных атомов. Важным примером может служить расщепление уровней энергии атома в кристаллах и комплексных соединениях, которое происходит под действием электрических полей, создаваемых окружающими ионами.

Экспериментальные методы исследования структуры атома, его уровней энергии, его взаимодействий с другими атомами, элементарными частицами, молекулами, внешними полями и так далее разнообразны, однако основная информация содержится в его спектрах. Методы атомной спектроскопии во всех диапазонах длин волн, и в особенности методы современной лазерной спектроскопии, позволяют изучать всё более тонкие эффекты, связанные с атомом. С начала 19 века существование атома для учёных было очевидным, однако эксперимент по доказательству реальности его существования был поставлен Ж. Перреном в начале 20 века. С развитием микроскопии появилась возможность получать изображения атомов на поверхности твёрдых тел. Впервые атом увидел Э. Мюллер (США, 1955) с помощью изобретённого им автоионного микроскопа. Современные атомно-силовые и туннельные микроскопы позволяют получать изображения поверхностей твёрдых тел с хорошим разрешением на атомном уровне (смотри рисунок 3).

Рис. 3. Изображение атомной структуры поверхности кремния, полученное профессором Оксфордского университета М. Капстеллом с помощью сканирующего туннельного микроскопа.

Существуют и широко используются в различных исследованиях так называемые экзотические атомы, например мюонные атомы, т. е. атомы, в которых все или часть электронов заменены отрицательными мюонами, мюоний, позитроний, а также адронные атомы, состоящие из заряженных пионов, каонов, протонов, дейтронов и др. Осуществлены также первые наблюдения атома антиводорода (2002) - атома, состоящего из позитрона и антипротона.

Лит.: Борн М. Атомная физика. 3-е изд. М., 1970; Фано У., Фано Л. Физика атомов и молекул. М., 1980; Шпольский Э. В. Атомная физика. 7-е изд. М., 1984. Т. 1-2; Ельяшевич М. А. Атомная и молекулярная спектроскопия. 2-е изд. М., 2000.

Состав атома.

Атом состоит из атомного ядра и электронной оболочки .

Ядро атома состоит из протонов (p + ) и нейтронов (n 0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N (p + ) равно заряду ядра (Z ) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N (p +) = Z

Сумма числа нейтронов N (n 0), обозначаемого просто буквой N , и числа протонов Z называется массовым числом и обозначается буквой А .

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е -).

Число электронов N (e -) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома - сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент - вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп - совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э - символ элемента), например: .


Строение электронной оболочки атома

Атомная орбиталь - состояние электрона в атоме. Условное обозначение орбитали - . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s , p , d и f .

Электронное облако - часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание : иногда понятия "атомная орбиталь" и "электронное облако" не различают, называя и то, и другое "атомной орбиталью".

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный ("энергетический") уровень , их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s -подуровень (состоит из одной s -орбитали), условное обозначение - .
p -подуровень (состоит из трех p
d -подуровень (состоит из пяти d -орбиталей), условное обозначение - .
f -подуровень (состоит из семи f -орбиталей), условное обозначение - .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s , 3p , 5d означает s -подуровень второго уровня, p -подуровень третьего уровня, d -подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n . Общее число орбиталей на одном уровне равно n 2 . Соответственно этому, общее число облаков в одном слое равно также n 2 .

Обозначения: - свободная орбиталь (без электронов), - орбиталь с неспаренным электроном, - орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии - электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули - на одной орбитали не может быть больше двух электронов.

3. Правило Хунда - в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n 2 .

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s , 5f , 6d , 7p ...

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев ("электронная схема").

Примеры электронного строения атомов:



Валентные электроны - электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны - 4s 2 , они же и валентные; у атома Fe внешние электроны - 4s 2 , но у него есть 3d 6 , следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция - 4s 2 , а атома железа - 4s 2 3d 6 .

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система - графическое выражение периодического закона.

Естественный ряд химических элементов - ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем "разрезания" естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные ), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице - восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице - шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB - побочной подгруппе седьмой группы: остальные - аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ ("неметалличность"),
  • ослабевают восстановительные свойства простых веществ ("металличность"),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ ("неметалличность"; только в А-группах),
  • усиливаются восстановительные свойства простых веществ ("металличность"; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).

Задачи и тесты по теме "Тема 9. "Строение атома. Периодический закон и периодическая система химических элементов Д. И. Менделеева (ПСХЭ)"."

  • Периодический закон - Периодический закон и строение атомов 8–9 класс
    Вы должны знать: законы заполнения орбиталей электронами (принцип наименьшей энергии, принцип Паули, правило Хунда), структуру периодической системы элементов.

    Вы должны уметь: определять состав атома по положению элемента в периодической системе, и, наоборот, находить элемент в периодической системе, зная его состав; изображать схему строения, электронную конфигурацию атома, иона, и, наоборот, определять по схеме и электронной конфигурации положение химического элемента в ПСХЭ; давать характеристику элемента и образуемых им веществ по его положению в ПСХЭ; определять изменения радиуса атомов, свойств химических элементов и образуемых ими веществ в пределах одного периода и одной главной подгруппы периодической системы.

    Пример 1. Определите количество орбиталей на третьем электронном уровне. Какие это орбитали?
    Для определения количества орбиталей воспользуемся формулой N орбиталей = n 2 , где n - номер уровня. N орбиталей = 3 2 = 9. Одна 3s -, три 3p - и пять 3d -орбиталей.

    Пример 2. Определите, у атома какого элемента электронная формула 1s 2 2s 2 2p 6 3s 2 3p 1 .
    Для того, чтобы определить, кокой это элемент, надо выяснить его порядковый номер, который равен суммарному числу электронов атома. В данном случае: 2 + 2 + 6 + 2 + 1 = 13. Это алюминий.

    Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


    Рекомендованная литература:
    • О. С. Габриелян и др. Химия 11 кл. М., Дрофа, 2002;
    • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. . Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в , ). Св-ва атома, в т. ч. важнейшая для способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных . Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. ). Ядро атома состоит из Z и N , удерживаемых ядерными силами (см. ). Положит. заряд и отрицат. заряд одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. элемента в периодич. системе Менделеева () равен числу в ядре.

В электрически нейтральном атоме число в облаке равно числу в ядре. Однако при определенных условиях он может терять или присоединять , превращаясь соотв. в положит. или отрицат. , напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и этого элемента.

Масса атома определяется массой его ядра; масса (9,109*10 -28 г) примерно в 1840 раз меньше массы или ( 1,67*10 -24 г), поэтому вклад в массу атома незначителен. Общее число и А = Z + N наз. . и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением N наз. . Атомы одного и того же элемента с одинаковыми Z и разными N наз. этого элемента. Различие масс мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия ()наблюдаются у вследствие большой относит. разницы в массах обычного атома (), D и Т. Точные значения масс атомов определяют методами .

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия атома зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, m l , m s . Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным п равно , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. . Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более , он наз. вырожденным (см. ). В атоме уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента с магн. полем, обусловленным орбитальным движением в электрич. поле ядра (см. ). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в атоме среднее распределение . Разл. атома существенно отличаются друг от друга распределением (рис. 2). Так, при l = 0 (s-состояния) отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома .

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания существенно уменьшается их связи с ядром. Напр., энергия отрыва от Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. , связанное с неразличимостью , и тот факт, что подчиняются , согласно к-рому в каждом , характеризуемом четырьмя квантовыми числами, не может находиться более одного . Для многоэлектронного атома имеет смысл говорить только о всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать отдельных и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и m s . Совокупность 2(2l+ 1) в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты , оболочка наз. заполненной (замкнутой). Совокупность 2п 2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число в оболочках и слоях при полном заполнении приведены в таблице:

Между стационарными состояниями в атоме возможны . При переходе с более высокого уровня энергии Е i на более низкий E k атом отдает энергию (E i - E k), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в ) или длительно связан (в. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают в замкнутой оболочке. Поэтому атомы с одним или неск. в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. для образования замкнутой внеш. оболочки, обычно принимают их. Атомы , обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц ( , ) на атомах (см. ). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты ( зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

===
Исп. литература для статьи «АТОМ» : Карапетьянц М. X., Дракин С.И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам .

Публикации по теме