Всегда ли молния бьет сверху вниз. Полярное сияние

Ежеминутно в землю ударяет 6 тыс. молний. Вероятность поражения человека составляет примерно 1 к 600 тысячам, при этом примерно треть пострадавших погибает на месте, а выжившие получают серьезные повреждения. Статистика весьма неточная, но дает общую картину: от прямых ударов смертность значительно ниже, чем, например, от автокатастроф или вирусных заболеваний. Тем не менее риск поражения существует, а последствия могут быть самыми неожиданными и удивительными.

Отличия удара молнии от бытового поражения током

Тело человека отлично пропускает электричество — в разумных пределах. Фактически попадание молнии является очень мощным ударом тока, медициной классифицируется, как электротравма. Напряжение разряда составляет около 300 кВт, а в бытовых приборах редко превышает 20-30 кВт. При этом длительность контакта с молнией составляет 3 миллисекунды, а поражение в бытовых условиях может длиться 500 и более миллисекунд.

Небесный разряд нагревает воздух вокруг, провоцирует появление ожогов и причудливых узоров на коже — вследствие разрыва сосудов. При поражении током, как правило, страдают руки и запястья. Молния же бьет в грудную клетку или в голову.

Симптомы поражения

  • Ожоги. Не только в местах поражения. Разряд провоцирует возгорание одежды и пожар на месте происшествия.
  • Травмы в результате падения или повреждения посторонними предметами.
  • Галлюцинации.
  • Потеря сознания.
  • Остановка сердца.
  • Нарушение опорно-двигательного аппарата.

Последствия удара молнии

Разряд пронизывает тело, оставляя ожоги — входной и выходной. Последних может быть несколько. Удар наносится снизу — от земли. Наиболее распространенная причина смерти — остановка сердца и не оказанная своевременно первая помощь. Человек впадает в шоковое состояние, которое многие пострадавшие сравнивают с пробуждением ото сна. Кроме того, распространены случаи развития паралича после поражения разрядом.

Слух и зрение

Примерно 50% пострадавших от прямого попадания получают серьезные проблемы с органами слуха и зрения. В течение 2-3 дней или нескольких лет развивается катаракта, зафиксированы случаи отслоения сетчатки, атрофии зрительных нервов и кровотечения.

Шум в ушах и временные потери слуха, головокружения, инфекционные заболевания среднего уха — последствия удара преследуют жертв на протяжении всей жизни. Непосредственно после удара возможен разрыв барабанных перепонок.

Кожа

Обширные ожоги I и II степени и разрывы сосудов оставляют пожизненные следы на теле. Появляются воспаления и покраснения кожного покрова, которые проходят через несколько дней.

Нервная система

Кровоизлияние в мозг, внутренние гематомы, амнезия и общий паралич — травмы ЦНС неизбежны при попадании молнии. Также, после реабилитации, могут развиваться психоневрологические заболевания.

Сердечно-сосудистая система

Если удалось быстро восстановить нормальный ритм сердца — последствия будут незначительны. Но если не провести реанимацию — человек погибает от гипоксии и нехватки кислорода.

Мышечная система

Разряд поражает мышцы, провоцируя токсичные выделения, которые сильно вредят почкам. Из-за сильных сокращений мышечных тканей во время удара ломаются кости, велика вероятность трещины позвоночника.

Удивительные способности, открывшиеся в людях после поражения

Рой Кливленд Салливан

Парковый Рейнджер из Кентукки за 34 года получил 7 прямых ударов. После последнего поражения Рой прожил еще 6 лет и покончил жизнь самоубийством в 71! Удивительный случай занесен в Книгу рекордов Гиннеса. Опасаясь получить разряд, как жена Салливана во время поражения летом 1977 года, окружающие сторонились отмеченного небом лесника на протяжении последних лет жизни.

Хорхе Маркес

Кубинец выжил после 5 ударов. Первые три поражения спровоцировали сильнейшие ожоги конечностей и спины, полное выгорание волос и выпадение пломб из зубов. Но удивительно, что все последующие удары не нанесли сколько-нибудь серьезных повреждений. Хорхе жив, ради собственной безопасности не выходит на улицу в грозу.

Владимир Игнатьевич Дронов

В начале ХХ века отставной капитан, которому было 50 лет, получил удар молнии на охоте. Дронов потерял сознание примерно на 30 минут. Серьезных последствий разряд не нанес, странности начались позже. За несколько месяцев лысина покрылась густым волосяным покровом, выпали все зубы, но через короткое время вылезли новые!

Бруно Ди Филиппо

Житель Массачусетса получил разряд, мирно поливая лужайку перед домом. Молния прошла через плечо и вышла через лодыжку. Врачи констатировали: удар не нанес абсолютно никакого вреда организму. На теле остался лишь незначительный рубец, который со временем пропал бесследно.

Ванга

Болгарская целительница, известная на весь мир, в детстве пострадала от урагана и удара молнии, потеряв при этом зрение, но обретя дар предсказания.

Гарольд Дин

После поражения молнией Гарольд стал невосприимчив к холоду: даже зимой житель Миссури выходит на улицу в одной футболке.

Василий Сайко

Пензяк получил разряд шаровой молнией, который прошел через грудную клетку и вышел со спины, не нанеся при этом видимых повреждений или поражений внутренних органов. Однако при обследовании выяснилось, что мучившая Василия хроническая язва желудка исчезла без следа.

Вагнер Кейси

На проходивших в Техасе гонках по бездорожью Вагнера с друзьями настигла гроза. Пытаясь укрыться под деревом, мужчина получил сильнейший разряд. Упав на землю, несчастный был второй раз поражен молнией. Кейси был немедленно госпитализирован, отделался незначительными повреждениями кожи и потерей чувствительности в правой ноге. Через несколько недель пострадавший полностью восстановился.

Распространенные мифы о молнии

От молнии не укрыться даже в здании

При попадании в здание, разряд уходит в землю по громоотводам. Дом — одно из самых безопасных мест во время грозы: чаще всего удары получают люди, находящиеся на открытой местности, возле водоемов или под деревьями. Не менее безопасным местом является автомобиль с прочной крышей.

Молния сбивает самолеты

Не менее одного раза в год разряд попадает в самолет, но редко приводит к авиакатастрофам: корпус лайнера изготовлен из металла, отлично проводящего электричество.

Молния не бьет в одно место дважды

Распространенное заблуждение, не обоснованное с научной точки зрения. Разряд может ударить дважды в один объект. Например, в сооружение высотой 500 метров ежегодно приходится 50-80 попаданий. Кроме того, физики вычислили, что после первого разряда молния ударит в радиусе от 10 до 100 метров с вероятностью 67%.

Молния образуется только во время дождя

Пока слышен гром — существует опасность получить удар молнии. При этом дождь может идти в 10 километрах и дальше.

Если прикоснуться к пострадавшему, можно получить удар током

Страшное заблуждение, из-за которого зачастую не оказывают первую медицинскую помощь пострадавшему. В действительности тело человека не способно удерживать электрический разряд.

Мобильный телефон опасен в грозу

Наука не приводит никаких фактов в поддержку этого мифа. Только телефон в металлическом корпусе, который соприкасается с кожей, может увеличить вероятность попадания молнии.

Оказать первую помощь и вызвать врача — обязанность каждого, ставшего свидетелем удара молнии в человека. Это несложно, велика вероятность, что вы спасете жизнь пострадавшему!

Доктор биологических наук, кандидат физико-математических наук К. БОГДАНОВ.

В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год. Еще Б. Франклин показал, что молнии, бьющие по земле из грозовых облаков, - это электрические разряды, переносящие на нее отрицательный заряд величиной несколько десятков кулон, а амплитуда тока при ударе молнии составляет от 20 до 100 кА. Скоростная фотосъемка показала, что разряд молнии длится несколько десятых долей секунды и состоит из нескольких еще более коротких разрядов. Молнии издавна интересуют ученых, но и в наше время об их природе мы знаем лишь немного больше, чем 250 лет тому назад, хотя смогли их обнаружить даже на других планетах.

Наука и жизнь // Иллюстрации

Способность электризации трением различных материалов. Материал из трущейся пары, находящийся выше в таблице, заряжается положительно, а ниже - отрицательно.

Отрицательно заряженный низ облака поляризует поверхность Земли под собой так, что она заряжается положительно, и, кода появляются условия для электрического пробоя, возникает разряд молнии.

Распределение частоты гроз по поверхности суши и океанов. Самые темные места на карте соответствуют частотам не более 0,1 грозы в год на квадратный километр, а самые светлые - более 50.

Зонт с громоотводом. Модель продавалась в XIX веке и пользовалась спросом.

Выстрел жидкостью или лазером по грозовой туче, нависшей над стадионом, уводит разряд молнии в сторону.

Несколько разрядов молний, вызванных пуском ракеты в грозовую тучу. Левая вертикальная прямая - след ракеты.

Крупный «ветвистый» фульгурит весом 7,3 кг, найденный автором на окраине Москвы.

Полые цилиндрические фрагменты фульгурита, образованные из оплавленного песка.

Белый фульгурит из Техаса.

Молния - вечный источник подзарядки электрического поля Земли . В начале XX века с помощью атмосферных зондов измерили электрическое поле Земли. Его напряженность у поверхности оказалась равной примерно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2-4 кА, плотность которого составляет 1-2 . 10 -12 А/м 2 , и выделяется энергия до 1,5 ГВт. И это электрическое поле исчезло бы, если бы не было молний! Поэтому в хорошую погоду электрический конденсатор - Земля - разряжается, а при грозе заряжается.

Человек не чувствует электрического поля Земли, так как его тело - хороший проводник. Поэтому заряд Земли находится и на поверхности тела человека, локально искажая электрическое поле. Под грозовым облаком плотность наведенных на земле положительных зарядов может значительно возрастать, а напряженность электрического поля - превышать 100 кВ/м, в 1000 раз больше ее значения в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом.

Электризация - удаление "заряженной" пыли. Чтобы понять, как облако разделяет электрические заряды, вспомним, что такое электризация. Легче всего зарядить тело, потерев его о другое. Электризация трением - самый старый способ получения электрических зарядов. Само слово "электрон" в переводе с греческого на русский означает янтарь, так как янтарь всегда заряжался отрицательно при трении о шерсть или шелк. Величина заряда и его знак зависят от материалов трущихся тел.

Считается, что тело, до того как его стали тереть о другое, электронейтрально. Действительно, если оставить заряженное тело в воздухе, то к нему начнут прилипать противоположно заряженные частицы пыли и ионы. Таким образом, на поверхности любого тела находится слой "заряженной" пыли, нейтрализующий заряд тела. Поэтому электризация трением - это процесс частичного снятия "заряженной" пыли с обоих тел. При этом результат будет зависеть от того, на сколько лучше или хуже снимается "заряженная" пыль с трущихся тел.

Облако - фабрика по производству электрических зарядов. Трудно представить, что в облаке находится пара материалов из перечисленных в таблице. Однако на телах может оказаться различная "заряженная" пыль, даже если они сделаны из одного того же материала, - достаточно, чтобы микроструктура поверхности отличалась. Например, при трении гладкого тела о шероховатое оба будут электризовываться.

Грозовое облако - это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верхушка грозы заряжена положительно, а низ - отрицательно. Все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Молния - привет из космоса и источник рентгеновского излучения. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый А. Гуревич из Физического института им. П. Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи - частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда (см. "Наука и жизнь" № 7, 1993 г.).

Каждый, кто видел молнию, заметил, что это не ярко светящаяся прямая, соединяющая облако и землю, а ломаная линия. Поэтому процесс образования проводящего канала для разряда молнии называют ее "ступенчатым лидером". Каждая из таких "ступенек" - это место, где разогнавшиеся до околосветовых скоростей электроны остановились из-за столкновений с молекулами воздуха и изменили направление движения. Доказательство для такой интерпретации ступенчатого характера молнии - вспышки рентгеновского излучения, совпадающие с моментами, когда молния, как бы спотыкаясь, изменяет свою траекторию. Недавние исследования показали, что молния служит довольно мощным источником рентгеновского излучения, интенсивность которого может составлять до 250 000 электронвольт, что примерно в два раза превышает ту, которую используют при рентгене грудной клетки.

Как вызвать разряд молнии? Изучать то, что произойдет непонятно где и когда, очень сложно. А именно так в течение долгих лет работали ученые, исследующие природу молний. Считается, что грозой на небе руководит Илья-пророк и нам не дано знать его планы. Однако ученые очень давно пытались заменить Илью-пророка, создавая проводящий канал между грозовой тучей и землей. Б. Франклин для этого во время грозы запускал воздушный змей, оканчивающийся проволокой и связкой металлических ключей. Этим он вызывал слабые разряды, стекающие вниз по проволоке, и первым доказал, что молния - это отрицательный электрический разряд, стекающий с облаков на землю. Опыты Франклина были чрезвычайно опасными, и один из тех, кто их пытался повторить, - российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

В 1990-х годах исследователи научились вызывать молнии, не подвергая опасности свою жизнь. Один из способов вызвать молнию - запустить с земли небольшую ракету прямо в грозовую тучу. Вдоль всей траектории ракета ионизирует воздух и создает таким образом проводящий канал между тучей и землей. И если отрицательный заряд низа тучи достаточно велик, то вдоль созданного канала происходит разряд молнии, все параметры которого регистрируют приборы, расположенные рядом со стартовой площадкой ракеты. Чтобы создать еще лучшие условия для разряда молнии, к ракете присоединяют металлический провод, соединяющий ее с землей.

Молния: подарившая жизнь и двигатель эволюции . В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль.

При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.

Почему зимой грозы очень редки? Ф. И. Тютчев, написав "Люблю грозу в начале мая, когда весенний первый гром…", знал, что зимой гроз почти не бывает. Чтобы образовалось грозовое облако, необходимы восходящие потоки влажного воздуха. Концентрация насыщенных паров растет с повышением температуры и максимальна летом. Разница температур, от которой зависят восходящие потоки воздуха, тем больше, чем выше его температура у поверхности земли, так как на высоте нескольких километров его температура не зависит от времени года. Значит, интенсивность восходящих потоков максимальна тоже летом. Поэтому и грозы у нас чаще всего летом, а на севере, где и летом холодно, грозы довольно редки.

Почему грозы чаще над сушей, чем над морем? Чтобы облако разрядилось, в воздухе под ним должно быть достаточное число ионов. Воздух, состоящий только из молекул азота и кислорода, не содержит ионов, и его очень тяжело ионизировать даже в электрическом поле. А вот если в воздухе много инородных частиц, например пыли, то и ионов тоже много. Ионы образуются при движении частиц в воздухе аналогично тому, как электризуются при трении друг о друга различные материалы. Очевидно, что пыли в воздухе гораздо больше над сушей, чем над океанами. Поэтому-то грозы и гремят над сушей чаще. Замечено также, что прежде всего молнии бьют по тем местам, где в воздухе особенно велика концентрация аэрозолей - дымов и выбросов предприятий нефтеперерабатывающей промышленности.

Как Франклин отклонил молнию. К счастью, большинство разрядов молнии происходят между облаками и поэтому угрозы не представляют. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, каждый год от удара молнии страдают около 1000 человек и более ста из них погибают. Ученые давно пытались защитить людей от этой "кары божьей". Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук (1692-1761) в статье об электричестве, написанной для знаменитой французской Энциклопедии, защищал традиционные способы предотвращения молнии - колокольный звон и стрельбу из пушек, которые, как он считал, оказываются довольно эффективными.

Бенджамин Франклин, пытаясь защитить Капитолий столицы штата Мериленд, в 1775 году прикрепил к зданию толстый железный стержень, который возвышался над куполом на несколько метров и был соединен с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие "божьего гнева", казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы. Любопытный случай произошел в 1780 году в небольшом городке Сент-Омер на севере Франции, где горожане потребовали снести железную мачту громоотвода, и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали Максимилиан Робеспьер. Ну а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Как можно защититься от молнии с помощью водяной струи и лазера . Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из... струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.

Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.

Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.

Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.

Фульгурит - окаменевшая молния. При разряде молнии выделяется 10 9 -10 10 джоулей энергии. Большая ее часть тратится на создание ударной волны (гром), нагрев воздуха, световую вспышку и другие электромагнитные волны, и только маленькая часть выделяется в том месте, где молния входит в землю. Однако и этой "маленькой" части вполне достаточно, чтобы вызвать пожар, убить человека и разрушить здание. Молния может разогреть канал, по которому она движется, до 30 000° С, в пять раз выше температуры на поверхности Солнца. Температура внутри молнии гораздо больше температуры плавления песка (1600-2000°C), но расплавится песок или нет, зависит еще и от длительности молнии, которая может составлять от десятков микросекунд до десятых долей секунды. Амплитуда импульса тока молнии обычно равна нескольким десяткам килоампер, но иногда может превышать и 100 кА. Самые мощные молнии и вызывают рождение фульгуритов - полых цилиндров из оплавленного песка.

Слово "фульгурит" происходит от латинского fulgur, что означает молния. Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров. Фульгуритами также называют оплавленности твердых горных пород, образованные ударом молнии; они иногда в большом количестве встречаются на скалистых вершинах гор. Фульгуриты, состоящие из переплавленного кремнезема, обыкновенно представляют собой конусообразные трубочки толщиной с карандаш или с палец. Их внутренняя поверхность гладкая и оплавленная, а наружная образована приставшими к оплавленной массе песчинками. Цвет фульгуритов зависит от примесей минералов в песчаной почве. Большинство из них имеют рыжевато-коричневый, серый или черный цвет, однако встречаются зеленоватые, белые или даже полупрозрачные фульгуриты.

По-видимому, первое описание фульгуритов и их связи с ударами молнии было сделано в 1706 году пастором Д. Германом (David Hermann). Впоследствии многие находили фульгуриты вблизи людей, пораженных разрядом молнии. Чарльз Дарвин во время кругосветного путешествия на корабле "Бигль", обнаружил на песчаном берегу вблизи Мальдонадо (Уругвай) несколько стеклянных трубочек, уходящих в песок вертикально вниз более чем на метр. Он описал их размеры и связал их образование с разрядами молний. Известный американский физик Роберт Вуд получил "автограф" молнии, которая чуть не убила его:

"Прошла сильная гроза, и небо над нами уже прояснилось. Я пошел через поле, которое отделяет наш дом от дома моей свояченицы. Я прошел ярдов десять по тропинке, как вдруг меня позвала моя дочь Маргарет. Я остановился секунд на десять и едва лишь двинулся дальше, как вдруг небо прорезала яркая голубая линия, с грохотом двенадцатидюймового орудия ударив в тропинку в двадцати шагах передо мной и подняв огромный столб пара. Я пошел дальше, чтобы посмотреть, какой след оставила молния. В том месте, где ударила молния, было пятно обожженного клевера дюймов в пять диаметром, с дырой посередине в полдюйма…. Я возвратился в лабораторию, расплавил восемь фунтов олова и залил в отверстие… То, что я выкопал, когда олово затвердело, было похоже на огромный, слегка изогнутый собачий арапник, тяжелый, как и полагается, в рукоятке и постепенно сходящийся к концу. Он был немного длиннее трех футов" (цитируется по В. Сибрук. Роберт Вуд. - М.: Наука, 1985, с. 285).

Появление стеклянной трубочки в песке при разряде молнии связано с тем, что между песчинками всегда находятся воздух и влага. Электрический ток молнии за доли секунд раскаляет воздух и водяные пары до огромных температур, вызывая взрывообразный рост давления воздуха между песчинками и его расширение, что слышал и видел Вуд, чудом не ставший жертвой молнии. Расширяющийся воздух образует цилиндрическую полость внутри расплавленного песка. Последующее быстрое охлаждение фиксирует фульгурит - стеклянную трубочку в песке.

Часто аккуратно выкопанный из песка фульгурит по форме напоминает корень дерева или ветвь с многочисленными отростками. Такие ветвистые фульгуриты образуются, когда разряд молнии попадает во влажный песок, который, как известно, имеет бo"льшую электропроводность, чем сухой. В этих случаях ток молнии, входя в почву, сразу начинает растекаться в стороны, образуя структуру, похожую на корень дерева, а рождающийся при этом фульгурит лишь повторяет эту форму. Фульгурит очень хрупок, и попытки очистить от прилипшего песка нередко приводят к его разрушению. Особенно это относится к ветвистым фульгуритам, образовавшимся во влажном песке.

15. Перенапряжения прямого удара молнии
Перенапряжениями специалисты называют любые кратковременные повышения напряжения в электрической сети над его номинальным уровнем. Здесь будут рассмотрены перенапряжения, которые вызывает ток молнии в месте удара. Самая простая ситуация – молнию принимает на себя специально установленный стержневой молниеотвод . Ее ток I через молниеприемник, а затем через токоотводы попадает в заземлитель и растекается в земле. При этом на сопротивлении заземления R з выделяется напряжение U R = I молR з. Это очень большое напряжение. Например, при I мол = 100 кА и R з = 10 Ом получается U R = 1000 кВ. Примерно такой же потенциал будет в ближайшей окрестности молниеотвода. Расположенный поблизости подземный кабель примет почти тот же потенциал и, если не предпринять специальных мер, передаст его по кабелю внутрь защищаемого здания, вызвав повреждения изоляции, которую на столь высокое напряжение не рассчитывали.
Воспроизведем еще одну практически значимую ситуацию, положив, что металлическая мачта молниеотвода одновременно выполняет функцию осветительной мачты и потому на ней крепятся изоляторы воздушной линии, питающей светильники. Потенциал мачты в месте крепления изоляторов светильников заметно выше, чем U R, потому что к падению напряжения на заземлителе добавляется падение напряжения на индуктивности мачты (или шин токоотводов, которые по ней проложены, если сама мачта непроводящая). Амплитуда напряжения на индуктивности L равна U L = L (di /dt )max, где выражение в скобках определяет скорость роста тока на фронте импульса. В оценке на усредненную длительность фронта импульса первого компонента молнии T f » 5 мкс для тока 100 кА, легко получить (di /dt )max » I мол/T f = 2´1010 А/с, что для индуктивности L = 30 мкГн (мачта высотой ~ 30 м) дает U L = L (di /dt )max = 600 кВ. Суммарная величина U мол = U R + U L возрастает, таким образом, в разобранном примере до 1600 кВ. Силовой провод находится под потенциалом осветительной сети (220/380 В), пренебрежимо малым по сравнению с U мол и потому практически все напряжение U мол действует на изоляцию силовой цепи относительно земли, в итоге перекрывая ее. Это типичный пример грозовых перенапряжений, в равной степени опасных и для низковольтных сетей, и для линий электропередачи высокого напряжением, где в роли молниеприемка выступает опора или молниезащитный трос линии.

16. Индуцированные перенапряжения от молнии
Это самый распространенный вид перенапряжений, за который ответственно электромагнитное поле молнии. Здесь будут рассмотрены раздельно последствия изменения магнитного поля тока молнии и последствия изменения заряда, который несет ее приближающийся к земле канал. В какой-то степени такое деление - условность, но оно удобно для понимания сути дела.
Если произвольный контур помещен в магнитное поле B , в контуре будет наведена ЭДС магнитной индукции U маг » -S A B. Здесь A B =dB /dt – скорость изменения магнитного потока, пронизывающего контур площади S . Пусть, например, этот контур создан витой парой проводов, которые связаны с компьютером. Тогда площадь контура очень небольшая, порядка 10 см2 (в расчете на кабель длиной в несколько метров). Допустим еще, что провод проходит по стене здания на расстоянии r = 1 м от параллельного ему токоотвода, который отводит к земле ток молнии от молниеприемника. Оценка сверху должна ориентироваться на предельно высокую скорость роста тока молнии A I. Действующие нормативные документы дают величину A I = 2∙1011 А/с. Скорость роста магнитного поля, которая ей соответствует, оценивается при этом как
,
где m0 = 4p∙10-7 Гн/м – магнитная проницаемость вакуума. В рассматриваемом примере Ф B » 4∙104 В/м2 и потому U маг = -B » 40 В. Не нужно пренебрегать полученной величиной. Она на порядок больше рабочего напряжения современной микросхемы и наверняка выведет ее из строя.
Представление о другом масштабе перенапряжений дают оценки для воздушной линии электропередачи напряжением 220/380 В. Здесь площадь контура, образованного фазным и нулевым проводом, легко достигает S = 100 м2. Даже далекий разряд молнии на расстоянии r = 100 м от линии приводит к средней скорости роста магнитного поля ~ 400 В/м2, что дает перенапряжение в 40 кВ, безусловно опасное и для трансформаторной подстанции, и для потребителей, которых та питает.
Теперь об электрической составляющей наведенных перенапряжений. Ее вызывает переток электрического заряда, который наводится электрическим полем канала молнии. Заряд канала достаточно весом, около 0,5 – 1 мКл на метр длины, а электрическое поле у земли, которое он возбуждает, многократно превышает электрическое поле грозового облака. Оценка по полю E мол » 200 кВ/м не будет слишком завышена. Теперь представьте проводник электрической емкостью С , размещенный над землей на высоте h. Это может быть горизонтальный провод (например, антенна), металлический корпус какого-то агрегата или строительная конструкция. Потенциал от заряда канала молнии на высоте h , равный U эл = E молh наведет на заземленном проводнике заряд Q = CU эл. После удара молнии в землю, когда заряд ее канала нейтрализуется и электрическое поле исчезнет, наведенный заряд стечет с проводника в землю через сопротивление заземления R з. Ток от стекающего заряда создаст падение напряжения на проводнике относительно земли. Это может быть вполне приличная величина. Если, например, емкость объекта С = 1000 пкФ (провод длиной около 100 м), а высота его подвеса над землей 5 м, то заряд канала молнии создаст в месте размещения объекта потенциал до U эл = E молh = 200´5 = 1000 кВ. В результате наведенный заряд составит Q = CU эл = 10-9´106 = 10-3 Кл. При нейтрализации приземной части канала молнии за время Dt » 1 мкс по сопротивлению заземления проводника протечет ток i » Q /Dt = 10-3/10-6 = 1000 А, который вызовет падение напряжения на сопротивлении заземления R з = 10 Ом величиной U эл = i R з = 1000´10 = 10 кВ.

17. Занос высокого потенциала
Таким не очень благозвучным и не вполне точным словосочетанием в молниезащите называют доставку к защищаемому объекту высокого напряжения по его надземным или подземным коммуникациям. Сам объект может быть и не поражен прямым ударом молнии. Пусть молния ударила совсем в другое сооружение, в дерево или даже просто в землю. Растекаясь в земле у пораженного сооружения, ток молнии создаст на его заземлителе очень высокое напряжение, U з = I молR з. (например, 300 кВ, если R з.= 10 Ом, а I мол = 30 кА). Под таким же напряжением окажется металлическая оболочка коммуникации, которая связана с тем же заземлителем. Волна напряжения может распространяться по коммуникации на большие расстояния, особенно если она наземная и лишена утечки электрических зарядов в грунт. Но даже в подземном исполнении коммуникация может транспортировать волну высокого напряжения на расстояние в сотни метров без заметного затухания. Чем выше удельное сопротивление грунта, тем эффективнее транспортировка. В скальных породах, сухих песках или в вечно мерзлых грунтах занос высокого потенциала опасен даже на расстояниях в несколько километров.
Особо нужно отметить современные коммуникации из пластиковых труб. Внутри их электролит (в крайнем случае, водопроводная вода, которая тоже неплохой проводник), вполне пригодный для передачи высокого напряжения на большие расстояния, а снаружи высококачественный пластик, надежно изолирующий внутреннюю среду от контактов с грунтом. Теперь утечки в грунт исключаются полностью. Легко представить последствия прикосновения человека к металлическому крану такой коммуникации. Стоя на земле с нулевым потенциалом, он окажется под действием полного напряжения, которое передано по жидкостному каналу.

18. Перенапряжения от распространения тока молнии по металлически оболочкам
Металлическую оболочку обоснованно считают эффективным электромагнитным экраном. Тем не менее, она не спасает полностью от воздействия грозовых перенапряжений на внутренние цепи. Причину возникновения перенапряжений легко уяснить из следующего рисунка. Ток молнии, распространяясь по металлической оболочке длины l , создает на ней падение напряжения DU = R 0lI , где R 0 – сопротивление

единицы длины оболочки. Внутренний провод связан с началом оболочки и потому принимает ее потенциал в месте контакта. Потенциал другого конца оболочки из-за падения напряжения от тока I на DU меньше. Значит между концом внутреннего проводника и концом оболочки будет действовать напряжение U э = DU = R 0lI . Следующая оценка позволяет понять, о каких значениях здесь может идти речь. Пусть длина стальной оболочки l = 100 м, а площадь ее сечения – 100 мм2. Тогда погонное сопротивление составит R 0 = 0,001 Ом/м, что при токе молнии I = 100 кА приведет к перенапряжению U э = R 0lI = 0,001´100´100 = 10 кВ. Этого вполне достаточно для повреждения изоляции осветительного кабеля 220/380 В.
Более строгий анализ показывает, что металлическая оболочка не спасает полностью и от перенапряжениях в двухпроводных системах. Дело в том, что потенциал, принимаемый внутренним проводником, зависит от его внутреннего расположения. Все проводники равноценны только в оболочке круглого сечения. Если же сечение оболочки некруговое (например, это прямоугольный короб), потенциалы проводников будут различными и между ними появится напряжение. Как, правило, оно на порядки ниже только что оцененной величины, но и этого бывает достаточно для повреждения микросхемы, к которой подходит кабельная пара.

19. Защитное действие молниеотводов
С времен Франклина и Ломоносова принято, что молния направляется к наиболее высокому сооружению на земной поверхности. Это положение можно принять и сегодня, но с принципиальной оговоркой: молния с наибольшей вероятностью направляется к наиболее высокому сооружению. Вероятность поражения менее высокого тоже ненулевая. Из самых общих соображений понятно, что эта вероятность снижается с увеличением разности высот. Значит, для надежной защиты высота молниеотвода должна быть больше высоты защищаемого объекта. Чем больше требуемая надежность, тем выше должен быть молниеотвод.
Выбор молниеотводов часто производят по их зонам защиты. Предполагается, что надежность защиты не будет ниже указанной величины, если объект целиком размещен внутри зоны защиты. Для стержневого молниеотвода зону защиты представляют в виде конуса, вершина которого лежит на вертикальной оси стержня. Из сказанного выше следует, что вершина зоны должна располагаться ниже вершины молниеприемника, если гарантируемая надежность защиты больше 0,5. Чтобы убедиться в этом достаточно предположить два расположенных вплотную заземленных стержня равной высоты, посчитав один из них молниеотводом, а другой объектом. Ясно, что за большой срок наблюдения стержни примут на себя равное число ударов молнии (50%-ная надежность защиты). Чтобы обеспечить надежность 0,9 или 0,99 стержень, обозначенный молниеотводом, обязательно должен стать выше, чтобы принимать на себя большую часть молний. Сказанное в равной степени справедливо и для тросовых молниеотводов.

Даже при очень большой разности высот молниеотвод не может обеспечить идеальной защиты. На снимке, который здесь представлен, молния промахнулась мимо вершины Останкинской телебашни на 202 м. Такой случай не уникален.
На практике оперируют надежностью защиты 0,9 или 0,99 (к защищаемому объекту прорывается одна молния из 10 или из 100), редко – 0,999. Для одиночного стержневого молниеотвода высотой h £ 30 м радиус зоны защиты с надежностью 0,9 на уровне земли равен примерно r 0 = 1,5h . а с надежностью 0,99 r 0 = 0,95h . Применение системы из многих молниеотводов заметно расширяет зону защиты. При разумном расположении защищаемый объем может быть в несколько раз больше суммы зон защиты каждого из молниеотводов в отдельности. Этим широко пользуются специалисты.
Если правильно рассчитать и установить молниеотвод на крыше своего дома или около него, можно почти не беспокоиться о прожогах кровли. Даже при надежности защиты 0,9 к дому относительно небольшой высоты прорвется меньше одной молнии за 100 лет. К сожалению, на электромагнитные воздействия молнии такой молниеотвод почти не повлияет. Именно эти воздействия становятся главной причиной аварийных ситуаций.

20. Защита от электромагнитных воздействий молнии
Для современной техники – это самая важная проблема. Фирмы со штатом в тысячи человек разрабатывают и выпускают аппаратуру для защиты от электромагнитных воздействий силовых электрических цепей, телефонных линий, каналов телевидения и даже средств охраны вашего дома от нежелательных “гостей”.
Защитные устройства независимо от их конструкции часто называют ограничителями перенапряжения. Представьте какую-нибудь двухпроводную электрическую цепь, которая входит в Ваш дом. Пусть это будет, например, сеть 220 В. У вас не возникнет проблем, если величину грозовых перенапряжений в сети ограничить уровнем, безопасным для изоляции внутренней проводки и включенной в сеть аппаратуры (например, телевизора, СВЧ-печи или компьютера). При рабочем напряжении 220 В изоляция кратковременно выдержит увеличение напряжения в 3 – 5 раз, вряд ли больше. Значит, на входе в дом надо поставить устройство, которое не даст перенапряжению подняться выше.
Механическая система здесь непригодна из-за своей инерционности. Любое механическое реле срабатывает за единицы-десятки миллисекунд, а грозовое перенапряжение, вызванное током молнии, нарастает примерно в 100 раз быстрее. Нужное быстродействие обеспечивается только полупроводниковыми или газоразрядными приборами. Сегодня успешно используют и те, и другие.
Принципиальная идея такова. В месте входа воздушной сети в дом параллельно проводам установлена шайба, спеченная из оксида цинка. Ее толщина подобрана так, что при напряжении 220 В она практически не пропускает тока и ведет себя как совершенный изолятор, не влияя на электрическую цепь. Однако при появлении грозового перенапряжения проводимость шайбы очень быстро нарастает. За доли микросекунды она приближается к проводимости металлического проводника. Возникшее таким образом короткое замыкание не пропускает перенапряжение к аппаратуре внутри здания и она остается неповрежденной. Когда же ток молнии затухает и перенапряжение исчезает, оксидно-цинковая шайба за те же доли микросекунды возвращается в непроводящее состояние. За столь малое время ее работы автоматы и предохранители не успевают сработать и электроснабжение дома не нарушается.
Примерно так же работают и другие полупроводниковые устройства, варисторы. Меняется только их рабочее напряжение (оно может быть и очень низким для защиты микропроцессорной техники), а принцип действия остается неизменным). Благодаря простоте конструкции полупроводниковые ограничители перенапряжения (ОПН) широко распространены. Их удается смонтировать в малогабаритном корпусе, примерно таком же, как бытовые автоматы, и легко крепить на линейке обычной коммутирующей аппаратуры. Тем не менее, сегодня специалисты все чаще обращаются к старым и давно известным газоразрядным приборам. В них защищаемая цепь замыкается не полупроводниковой шайбой, а после пробоя специального искрового промежутка малой длины.
Газонаполненные разрядники с искровыми промежутками – более сложный прибор, чем полупроводниковый ограничитель. В нем обязательно предусматривают устройство для обрыва дуги с током короткого замыкания электрической сети. Сама по себе эта дуга погаснуть не может, ее гасит специальное дутье. Зато искровой разрядник более надежен, а главное, - он совершенно не страдает от случайного не очень сильного, но длительного повышения напряжения в электрической сети, скажем, когда из-за перекоса фаз держится 270 – 300 В вместо нормальных 220 В. От такого перенапряжения оксидно-цинковая шайба чуть-чуть приоткрывается, начинает пропускать ток, перегревается и выходит из строя. Ничего похожего искровому разряднику не грозит.

21. Почему молния не в ладах с дилетантами
Прочитанные главки дают представление о разностороннем вооружении молнии. В конце концов, какое-нибудь ее оружие может сработать. Человеку не легче, если он, справившись с защитой своего сооружения от прямого удара молнии, пострадает от заноса высокого потенциала, грозовых перенапряжений в электрической сети или сбоев электронного оборудования, пославшего ложную команду. Защита от молнии должна быть комплексной и обязательно совместимой с технологическим назначением объекта. Полумеры здесь мало подходят. Более того, не исключена ситуация, когда недальновидное решение может усугубить опасные воздействия молнии. Вот почему проект по молниезащите должен подготовить специалист. Он должен внимательно оценить опасность всех возможных воздействий высокотемпературного канала, тока и электромагнитного поля молнии. Во внимание должно быть приняты не только конструктивные особенности защищаемого объекта, но и его окружение на поверхности земли и даже подземные коммуникации. Дилетанту такое не по силам.
Очень важно, чтобы средства защиты от молнии не “навешивались” на уже смонтированный объект, а разрабатывались еще на стадии проекта. Только тогда удастся максимально совместить элементы молниезащиты с конструктивными деталями защищаемого объекта и тем самым сберечь немалые деньги. Не редкость, когда совершенно незначительное изменение конструкции объекта, не сказывающееся на его технологических функциях, влечет за собой очень резкое повышение молниестойкости. На такие решения способны только высоко квалифицированные специалисты.

Задумывались ли вы когда-то почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто - они сидят на проводе, но ток через птицу не течет, но если птичка взмахнет крылом, одновременно касаясь двух фаз - умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и не дай Бог коснуться стены или металла.

Электрический ток способен убить человека в долю секунды, он поражает без предупрежденья. Молния ударяет в землю сто раз в секунду и свыше восьми миллионов раз в день. Эта сила природы в пять раз горячее, чем поверхность солнца. Электрический разряд бьёт с силой в 300`000 ампер и миллион вольт в долю секунды. В повседневной жизни мы думаем, что можем контролировать электричество, которое питает наши дома, наружное освещение, а теперь и автомобили. Но электричество в его первозданной форме не поддаётся контролю. А молния - это электричество в громадных масштабах. И всё же молния остаётся большой загадкой. Она может ударить неожиданно, и её путь может быть непредсказуемым.

Молния в небе не приносит вреда, но одна из десяти молний обрушивается на поверхность земли. Молния разделяется на множество ветвей, каждая из которых способна поразить человека находящегося в эпицентре. При ударе человека молнией, разряд тока может переходить от одного человека к другому, если они соприкасаются.

Существует правило тридцати и тридцати: если вы видите молнию, а менее чем через тридцать секунд услышали гром, то надо искать убежище, а затем требуется подождать тридцать минут с последнего раската грома, прежде чем выходить на улицу. Но молния не всегда подчиняется строгому порядку.

Существует такое атмосферное явление, как гром среди ясного неба. Часто молния, выходя из облака, проходит до шестнадцати километров, прежде чем ударить в землю. Другими словами, молния может появиться ниоткуда. Молнии нужен ветер и вода. Когда сильные ветра поднимают влажный воздух, возникают условия для появления разрушительных гроз.

Невозможно разложить на составляющие то, что укладывается в миллионную долю секунды. Одно из ложных убеждений состоит в том, что мы видим молнию, когда она устремляется в землю, на самом деле мы видим обратный путь молнии в небо. Молния - это не однонаправленный удар в землю, а это на самом деле кольцо, путь в две стороны. Вспышка молнии, которую мы видим, так называемый обратный удар, завершающая фаза цикла. И когда обратный удар молнии раскаляет воздух, появляется её визитная карточка - гром. Обратный путь молнии - это та часть молнии, которую мы видим как вспышку и слышим как гром. Обратный ток силой в тысячи ампер и миллионы вольт устремляются от земли к облаку.

Молния регулярно поражает электрическим током человека в помещении. Она может проникнуть в строение разными путями, по водосточным трубам и водопроводу. Молния может проникать в электропроводку, сила тока которой в обычном доме не достигает двухсот ампер и перегружает электропроводку скачками от двадцати тысяч до двухсот тысяч ампер. Возможно, наиболее опасная тропа в вашем доме ведёт прямо к вашей руке через телефон. Почти две трети ударов электрическим током в помещениях приходятся на людей, взявшие в свои руки трубку стационарного телефона во время молнии. Беспроводные телефоны более безопасны во время грозы, но молния может ударить человека электрическим током, который стоит рядом с базой телефона. Даже громоотвод не может защитить вас от всех молний, так как он не способен ловить молнию в небе.

О природе молнии

Существует несколько различных теорий, объясняющих происхождение молний.

Обычно нижняя часть облака несёт отрицательный заряд, а верхняя - положительный, что делает систему облако-земля подобной гигантскому конденсатору.

Когда разность электрических потенциалов становится достаточно большой, между землёй и облаком или между двумя частями облака происходит разряд, известный под названием молнии.

Опасно ли находиться в автомобиле во время молнии?

В одном из этих опы-тов искусственная смертельная молния в метр длиной была на-правлена на стальную крышу автомобиля, в котором находился человек. Молния прошла по обшивке, не нанеся вреда человеку. Как же так получилось? Поскольку заряды на заряженном пред-мете взаимно отталкиваются, они стремятся разойтись как можно дальше друг от друга.

В случае полого механического шара пи цилиндра заряды распределяются по внешней поверхности предмета Аналогично, если молния л дарит в металлическую крышу автомобиля, то отталкивающиеся электроны чрезвычайно быстро разойдутся по поверхности автомашины и уйдут через ее корпус в землю. Поэтому молния по поверхности металлической машины уходит в землю и не попадает внутрь автомобиля. По той же причине совершенной защитой от молнии является металличе-ская клеть. В результате ударов в автомашину искусственных молний напряжением 3 млн. вольт потенциал автомобиля и тела, находящегося в нём человека, повышается почти до 200 тыс. вольт. Человек при этом не испытывает ни малейшего признака удара электрического тока, поскольку между любыми точками его тела нет никакой разности потенциалов.

Значит, почти полностью защищает от молнии пребывание в хорошо заземленном здании с металлическим каркасом, а та-ковых много в современных городах.


Чем объяснить, что птицы совершенно спокойно и безнаказанно сидят на проводах?

Тело сидящей птицы представляет собой как бы ответвление цепи (параллельное соединение). Сопротивление этой ветви с птицей много больше, чем сопротивление провода между ногами птицы. Поэтому сила тока в теле птицы ничтожна. Если бы птица, сидя на проводе, коснулась бы крылом или хвостом столба или как-то ещё соединилась бы с землёй, она мгновенно была бы убита током, который устремился бы через неё в землю.


Интересные факты о молниях

Средняя длина молнии 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.

Молнии приносят пользу: они успевают выхватить из воздуха млн тн азота, связать его и направить в землю, удобряя почву.

Молнии Сатурна в миллион раз сильнее земных.

Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии).

Ежесекундно на Земле вспыхивает около 700 молний. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, Панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, С-Петербург - 15, Москва - 20 грозовых дней в году.

Воздух в зоне канала молнии практически мгновенно разогревается до температуры 30 000-33 000° С. От удара молнии в мире в среднем ежегодно погибает около 3 000 человек

Статистика показывает, что на 5000-10000 летных часов приходится один удар молнии в самолет, к счастью, почти все поврежденные самолеты продолжают полет.

Несмотря на сокрушительную мощь молнии, уберечься от нее довольно просто. Во время грозы следует немедленно уходить с открытых мест, ни в коем случае нельзя прятаться под отдельно стоящими деревьями, а также находиться вблизи высоких мачт и ЛЭП. Не следует держать в руках стальные предметы. Также во время гроз нельзя пользоваться средствами радиосвязи, мобильными телефонами. В помещении нужно отключить телевизоры, радиоприемники и электроприборы.


Молниеотводы защищают здания от поражения молнией по двум причинам: они дают возможность стекать в воздух наве-денному на здании заряду, а при ударе молнии в здание уводят её в землю.

Попав в грозу, следует избегать укрываться возле одиноч-ных деревьев, изгородей, возвышенных мест и находиться на от-крытых пространствах.

Публикации по теме