Синхронный режим. Установившийся синхронный режим работы

Режим работы синхронной машины параллельно с сетью при синхронной частоте вращения называется синхронным.

Рассмотрим включенную на параллельную работу неявнополюсную машину, пренебрегая активным сопротивлением фаз обмотки якоря ().

Ток обмотки якоря будет равен

Изменение реактивной мощности. Режим синхронного компенсатора.

В случае, если выполнены все условия включения генератора на параллельную работу, ток якоря равен нулю, машина работает на холостом ходу. Если ток возбуждения генератора после синхронизации увеличен, то, и возникает ток, отстающей отна 90 эл. град. (рис.3.23,а). Машина будет отдавать в сеть индуктивный ток и реактивную мощность. Если ток возбуждения генератора уменьшить, то, возникает опережающий токотносительнои(рис.3.23,б). Машина будет отдавать в сеть емкостной ток и потреблять из сети реактивную мощность.

Синхронная машина не несущая активную нагрузку и загруженная реактивным током называется синхронным компенсатором.

Изменение активной мощности. Режим генератора и двигателя.

Чтобы включенная на параллельную работу машина вырабатывала активную мощность, работала в режиме генератора, необходимо увеличить механический вращающий момент на валу (рис.3.23,в). При этом возникает ток, отстающий отна. Значение активной мощности генератора равно

Если, наоборот, притормозить ротор машины, создав на его валу механическую нагрузку, то ЭДС будет отставать отна угол, токот- на угол(рис.3.23,г). При этом активная мощность будет равна, машина будет работать в режиме двигателя, потребляя активную мощность из сети.

При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхронизацию между приемником и передатчиком.

Канальный уровень оперирует кадрами данных и обеспечивает синхронизацию между приемником и передатчиком на уровне кадров. В обязанности приемника входит распознавание начала первого байта кадра, распознавание границ полей кадра и распознавание признака окончания кадра.

Обычно достаточно обеспечить синхронизацию на указанных двух уровнях - битовом и кадровом, - чтобы передатчик и приемник смогли обеспечить устойчивый обмен информацией. Однако при плохом качестве линии связи (обычно это относится к телефонным коммутируемым каналам) для удешевления аппаратуры и повышения надежности передачи данных вводят дополнительные средства синхронизации на уровне байт.

Такой режим работы называется асинхронным или старт-стопным . Другой причиной использования такого режима работы является наличие устройств, которые генерируют байты данных в случайные моменты времени. Так работает клавиатура дисплея или другого терминального устройства, с которого человек вводит данные для обработки их компьютером.

В асинхронном режиме каждый байт данных сопровождается специальными сигналами «старт» и «стоп» . Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта. Сигнал «старт» имеет продолжительность в один тактовый интервал, а сигнал «стоп» может длиться один, полтора или два такта, поэтому говорят, что используется один, полтора или два бита в качестве стопового сигнала, хотя пользовательские биты эти сигналы не представляют.

Асинхронным описанный режим называется потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта. Такая асинхронность передачи байт не влияет на корректность принимаемых данных, так как в начале каждого байта происходит дополнительная синхронизация приемника с источником за счет битов «старт». Более «свободные» временные допуски определяют низкую стоимость оборудования асинхронной системы.

При синхронном режиме передачи старт-стопные биты между каждой парой байт отсутствуют. Пользовательские данные собираются в кадр, который предваряется байтами синхронизации. Байт синхронизации - это байт, содержащий заранее известный код, например 0111110, который оповещает приемник о приходе кадра данных. При его получении приемник должен войти в байтовый синхронизм с передатчиком, то есть правильно понимать начало очередного байта кадра. Иногда применяется несколько синхробайт для обеспечения более надежной синхронизации приемника и передатчика. Так как при передаче длинного кадра у приемника могут появиться проблемы с синхронизацией бит, то в этом случае используются самосинхронизирующиеся коды.

В нормальном режиме работы на вал генератора действует два момента (считаем, что можно пренебречь моментом сопротивления, обусловленным трением в подшипниках и сопротивлением охлаждающей среды): момент турбины Мт , вращающий ротор генератора и стремящийся ускорить его вращение, и синхронный электромагнитный момент Мэм , противодействующий вращению ротора. В случае нарушения равновесия между вращающим моментом турбины и электромагнитным (тормозным) моментом генератора в зависимости от тяжести возмущения могут возникать: синхронные качания или асинхронный режим генератора.

Асинхронный режим (asynchronous regime ) – переходный режим в энергосистеме, характеризующийся несинхронным вращением части генераторов энергосистемы.

Асинхронные режимы могут возникать в результате:

Нарушения статической устойчивости из-за увеличения передаваемой мощности по линиям электропередачи сверхдопустимого значения;

Нарушения динамической устойчивости из-за аварийных возмущений (коротких замыканий, отключение генерирующего оборудования или электроустановок потребителя);

Несинхронного включения линий электропередачи и генераторов;

Потери возбуждения генератора.

Следует отметить, что асинхронные режимы работы невозбужденной и возбужденной синхронной машины существенным образом отличаются друг от друга.

1. Асинхронный режим возбужденной синхронной машины

В качестве примера, рассмотрим переход генератора в асинхронный режим работы из-за нарушения динамической устойчивости (см. рис.1) при возникновении короткого замыкания с отключением линии электропередачи.

Характерная особенность указанной зависимости - наличие четко выраженного максимума и минимума. Отличие асинхронного режима от синхронных качаний с точки зрения изменения тока заключается только в величине максимального значения тока в цикле качаний и в длительности этих качаний. Поскольку угол при синхронных качаниях теоретически может достигать своего критического значения, нельзя отличить асинхронный режим от синхронных качаний только по значению тока. Поэтому устройства АЛАР, основанные на выявлении асинхронного режима по колебаниям тока, настраиваются на работу на втором, третьем и т.д. цикле асинхронного режима. Другими словами, селективно асинхронный режим можно выявить лишь по длительным колебаниям тока с амплитудой не менее заданной и периодом не более расчетного.

Зависимость изменения напряжения и взаимного угла между двумя векторами напряжения при асинхронном режиме

Выражение для определения напряжения в промежуточных точках определяется в соответствии со вторым законом Кирхгофа по следующей формуле:

Относительная удаленность контролируемой точки с напряжением от точки с напряжением .

В асинхронном режиме вектор ЭДС синхронной машины, выпавшей из синхронизма, начинает вращаться относительно вектора ЭДС машин, работающих синхронно. Следует отметить, что в общем случае вращение вектора может происходить как по часовой стрелке, так и против часовой стрелки:

против часовой стрелки ускоряются

Если вектор энергосистемы №2 вращается по часовой стрелке , то это свидетельствует о том, что генераторы энергосистемы №2 тормозятся относительно генераторов энергосистемы №1.

В качестве примера рассмотрим вращение вектора системы №2 в представленной расчетной схеме «по часовой стрелке».

Анализ полученных выражений показывает, что в момент расхождения напряжения системы №1 и системы №2 на угол 180 градусов (асинхронный проворот) активная мощность меняет свой знак, а значение реактивной мощности достигает своего максимального значения. Данная особенность изменения мощности в момент асинхронного проворота используется различными производителями в устройствах АЛАР независимо от элементной базы (электромеханические или микропроцессорные устройства).

В общем случае годограф вектора полной мощности (S = P + j Q) в месте измерения (установки реле мощности) представляет собой эллипс (зависимость P от Q) при изменении угла. Особенности изменения годографа мощности в цикле асин-хронного хода позволяют выявить момент наступления асинхронного режима, если есть возможность зафиксировать переход указанного годографа из диапазона углов ~0<δ<180° в диапазон ~180 0 <δ<360 0 при выполнении дополнительного условия, характеризующего зону δ≈180°.

Зависимость изменения сопротивления при асинхронном режиме

Сопротивление на зажимах реле сопротивления определяется как частное от деления напряжения в контролируемой точке на ток

С учетом соотношения между модулями напряжения по концам линии электропередачи полученное выражение может быть преобразовано в следующем виде:

Анализ полученного выражения показывает, что годографом сопротивления является окружность (эллипс), смещенная относительно начала координат. В зависимости от соотношения модулей напряжений по концам линии электропередачи характеристика изменения сопротивления имеет различный вид.

Дмитрий Иванов, 10 Декабря 2013

В этой статье мы познакомимся с синхронным режимом работы модуля WoodmanUSB. Имено в нем можно получить максимальные скорости пеередачи данных. В чем принципиальное отличие этого режима от асинхронного, который мы рассматривали ранее? В синхронном режиме помимо линии чтения/записи также должна применяться отдельная линия тактирования (CLK ), причем управляющие сигналы для чтения и записи должны быть довольно точно привязаны по времени к сигналу тактирования. Благодаря такой синхронизации WoodmanUSB позволяет получать скорости передачи данных до 220 МБит/с.

Начнем с основ. Существует несколько вариантов синхронного режима. В первую очередь необходимо выделить режим с внутренним и внешним тактированием. При внешнем тактировании тактовый сигнал подается на линию CLK модуля (работает на вход) от внешнего устройства. При внутреннем тактировании модуль сам генерирует тактовый сигнал и выдает его на линию CLK (работает на выход). Внешнее устройство тактируется по этому сигналу. Модуль может генерировать две частоты тактового сигнала: 30 и 48 МГц.

Теперь рассмотрим, что необходимо сделать на программном уровне, чтобы работать с портом PORTB модуля в синхронном режиме. Сдесь все очень просто. Необходимо только передать нужную констатну в функцию WUSB_SetupPortB() - и можно как раньше пользоваться функциями чтения/записи без каких-либо изменений. В библиотеке WUSBdrv.dll определены три константы для синхронного режима: SYNC_MODE_EXTERNAL_CLK - тактовый сигнал будет внешним относительно модуля (подается внешним устройством на линию CLK модуля), SYNC_MODE_INTERNAL_CLK_30MHZ - внутренний сигнал тактирования с частотой 30 МГц (выдается наружу через линию CLK) и SYNC_MODE_INTERNAL_CLK_48MHZ - тоже самое, только частота 48 МГц.

//SYNC_MODE_EXTERNAL_CLK 0x0C //SYNC_MODE_INTERNAL_CLK_30MHZ 0x14 //SYNC_MODE_INTERNAL_CLK_48MHZ 0x1C WUSB_SetupPortB(SYNC_MODE_INTERNAL_CLK_30MHZ);

Еще раз повоторю, что работа с функциями чтения/записи в синхронном режиме ни как не отличается от рассмотренной ранее в асинхронном режиме.


А теперь давайте рассмотрим временные диаграммы, илюстрирующее "взаимоотношения" между сигналом тактирования и управляющими сигналами чтения/записи.

1. Синхронный режим. Чтение данных из модуля внешним устройством

Таблица 1.1

Таблица 1.2

2. Синхронный режим. Запись данных в модуль внешним устройством

Таблица 2.1 Параметры синхронного режима при внутреннем тактировании

Параметр Описание Min Max

Период тактового сигнала

Таблица 2.2 Параметры синхронного режима при внешнем тактировании

Параметр Описание Min Max

Период тактового сигнала

Время предустановки сигнала чтения

Время удержания сигнала чтения

Время предустановки данных на линиях порта PORTB

Время удержания данных на линиях порта PORTB

Теперь давайте проведем небольшой тест, иллюстрирующий потенциальные скорости передачи в синхронном режиме. Идеологию оставим как в прошлой статье - сами данные реально не обрабатываем, генерируем только сигналы чтения/записи и в данном режиме еще и тактового сигнала. Также давайте определимся в каком из подвидов синхронного режима будем работать. Предлагаю использовать с вутренним тактированием на 48 МГц, поскольку с внешним все сложнее, необходимо соблюдать довольно жесткие требования по временным характеристикам. Схема тестового устройства показана ниже. Как видно из рисунка сигналы управления чтения/записи совпадают с тактовым сигналом, который в режиме внутреннего тактирования выводится "наружу" модуля по линии CLK.

Программу используем из прошлой статьи. Единственное изменение которое необходимо сделать так это вызвать функцию WUSB_SetupPortB() с параметром SYNC_MODE_INTERNAL_CLK_48MHZ. Скриншоты результатов тестов показаны ниже.


Я думаю Вы согласитесь, что результаты весьма не плохие. Итого можно сказать что синхронный режим заметно сложнее по аппаратной реализации чем асинхронный но его использование позволяет получать максимальные скорости передачи данных. Сложность аппаратной реализации обусловлена тем, что в реальности для передачи данных необходимо анализировать состояния буферов во избежание потерь данных при их переполнении это раз, затем необходимо сделать поправку на то что внешнее устройство должно быть достатчно быстродейситвующим, чтобы обеспечивать заданные временные характеристики генерации сигналов управления и их синхронизации с тактовым сигналом.


Здесь передатчик и приемник действуют независимо и обмениваются синхронизирующей комбинацией битов в начале каждого кодового элемента (кадра) сообщения. Между одним кадром сообщения и следующим нет фиксированной зависимости. Это аналогично таким устройствам обмена информацией, как клавиатура компьютера, ввод с которой может происходить с длинными случайными паузами между нажатиями на клавиши.

Рис. 2.13. Асинхронная передача данных

Выбранная первоначально скорость передачи задает частоту опроса (за исключением систем "Autobaud"). Частота опроса канала на приемнике высока, обычно в 16 раз выше скорости передачи бит (bit rate), для точного определения центра синхронизирующей комбинации (стартового бита) и его длительности.

Рис. 2.14. Извлечение синхросигнала

Затем биты данных определяются приемником путем опроса канала в моменты времени, соответствующие середине каждого передаваемого бита. Они определяются добавлением для; каждого последующего такта значения длительности бита, начиная с середины стартового бита. Для восьмибитной последовательной передачи этот опрос производится для каждого из восьми битов данных, а заключительная выборка производится во время девятого временного интервала. Последняя выборка служит для определения стопового бита и подтверждения сохранности синхронизации до конца кадра сообщения. Рис. 2.15 иллюстрирует процесс асинхронного приема данных.

Рис. 2.15. Асинхронный прием данных

2.4.4. Синхронная передача

Здесь передатчик и приемник устанавливают начальную синхронизацию, затем непрерывно передают данные, поддерживая ее на протяжении всего сеанса передачи. Достигается это посредством специальных схем кодирования данных, таких, как манчестерское кодирование (Manchester Encoding), которые обеспечивают непрерывную запись в передаваемый поток данных тактовых сигналов передатчика. Таким способом можно поддерживать синхронизацию приемника вплоть до последнего бита сообщения, которое может достигать длины 4500 байтов (36000 битов). Это позволяет эффективно передавать большие кадры данных на больших скоростях. Синхронная система упаковывает вместе множество символов и посылает их непрерывным потоком, который называется блоком. У каждого блока есть заголовок, содержащий стартовый ограничитель для начальной синхронизации и информацию о блоке, и завершающая ччасть, для проверки " ошибок и т. п. Пример блока синхронной передачи показан на рис. 2.16.

Публикации по теме