Простейшие одноклеточные. Одноклеточные и многоклеточные организмы

Организмы, чье тело включает лишь одну клетку, относятся к простейшим. Они могут иметь разную форму и всевозможные способы передвижения. Каждый знает хотя бы одно наименование, которое носит простейший живой организм, но не все догадываются, что это именно такое существо. Итак, какими же они бывают, и какие виды наиболее распространены? Да и что это за существа? Как и сложнейшие и кишечнополостные, одноклеточные организмы заслуживают детального изучения.

Подцарство одноклеточных

Простейшие являются мельчайшими существами. Их тела у которой есть все необходимые для жизнедеятельности функции. Так, простейшие одноклеточные организмы имеют способны проявлять раздражимость, двигаться и размножаться. Некоторые отличаются постоянной формой тела, а другие постоянно меняют ее. Основным компонентом организма является ядро, окруженное цитоплазмой. В ней располагаются несколько видов органоидов. Первые - общеклеточные. К таковым относятся рибосомы, митохондрии, аппарат Гальджи и тому подобные. Вторые - специальные. К ним можно отнести пищеварительную и Почти все простейшие одноклеточные организмы могут без особых затруднений передвигаться. В этом им помогают ложноножки, жгутики или реснички. Отличительной чертой организмов является фагоцитоз - способность захватывать твердые частицы и переваривать их. Некоторые также могут осуществлять фотосинтез.

Как распространяются одноклеточные?

Простейших можно встретить повсюду - в пресном водоеме, почве или море. Высокую степень выживаемости им обеспечивает умение инцистировать. Это означает, что при неблагоприятных условиях организм впадает в стадию покоя, покрываясь плотной защитной оболочкой. Создание цисты способствует не только выживанию, но и распространению - так организм может оказаться в более комфортной среде, где получит питание и возможность для размножения. Организмы простейшие осуществляют последнее с помощью деление на две новые клетки. У некоторых также есть способность к половому размножению, есть виды, сочетающие оба варианта.

Амеба

Стоит перечислить наиболее распространенные организмы. Простейшие нередко ассоциируются именно с этим видом - с амебами. У них нет постоянной формы тела, а для передвижения используются ложноножки. Ими же амеба захватывает пищу - водоросли, бактерии или других простейших. Окружив ее ложноножками, организм образует пищеварительную вакуоль. Из нее все полученные вещества попадают в цитоплазму, а непереваренное выбрасывается наружу. Дыхание амеба осуществляет всем телом с помощью диффузии. Излишки воды из организма выводятся сократительной вакуолью. Процесс размножения происходит с помощью деления ядра, после которого из одной клетки получаются две. Амебы относятся к пресноводным. Встречаются простейшие в организме человека и животных, в таком случае они могут приводить к разнообразным заболеваниям или ухудшать общее состояние.

Эвглена зеленая

Еще один организм, распространенный в пресных водоемах, также относится к простейшим. У эвглены зеленой тело веретенообразной формы с плотным наружным слоем цитоплазмы. Передний конец тела заканчивается длинным жгутиком, с помощью которого организм передвигается. В цитоплазме есть несколько овальных хроматофоров, в которых располагается хлорофилл. Это означает, что на свету эвглена питается автотрофно - такое умеют далеко не все организмы. Простейшие ориентируются с помощью глазка. Если же эвглена долго пробудет в темноте, хлорофилл исчезнет и организм перейдет к гетеротрофному способу питания с всасыванием органических веществ из воды. Как и амебы, эти простейшие размножаются делением, а также дышат всем телом.

Вольвокс

Среди одноклеточных встречаются и колониальные организмы. Простейшие под названием вольвокс живут именно так. У них шаровидная форма и студенистые тела, образуемые отдельными членами колонии. Каждый вольвокс обладает двумя жгутиками. Согласованное движение всех клеток обеспечивает перемещение в пространстве. Некоторые из них способны к размножению. Так возникают дочерние колонии вольвокс. Таким же строением отличаются и простейшие водоросли, известные под названием хламидомонады.

Инфузория-туфелька

Это еще один распространенный обитатель пресного водоема. Названием инфузории обязаны форме собственной клетки, напоминающей туфельку. Органоиды, используемые для движения, называются ресничками. У тела постоянная форма с плотной оболочкой и два ядра, малое и большое. Первое необходимо для размножения, а второе управляет всеми жизненными процессами. В качестве питания инфузория использует бактерии, водоросли и другие одноклеточные организмы. Простейшие часто создают пищеварительную вакуоль, у туфелек она находится на определенном месте у ротового отверстия. Для удаления непереваренных остатков присутствует порошица, а выделение осуществляется с помощью сократительной вакуоли. Для инфузорий характерно но оно может сопровождаться и объединением двух особей для обмена ядерным материалом. Такой процесс называется конъюгацией. Среди всех пресноводных простейших инфузория-туфелька является наиболее сложной по своему строению.

Простейшие животные одноклеточные организмы, признаки, питание нахождение в воде и в организме человека

Общая характеристика

Или одноклеточные, организмы, как видно из их названия, состоят из одной клетки. Тип Protozoa включает более 28 000 видов. Строение простейших можно сравнить со строением клеток многоклеточных организмов. Как у тех, так и у других основу составляют ядро и цитоплазма с различными органеллами (органоидами) и включениями. Однако нельзя забывать, что любая клетка многоклеточного организма входит в состав какой-либо ткани или органа, где выполняет свои специфические функции. Все клетки многоклеточного организма специализированы и не способны к самостоятельному существованию. В противоположность им простейшие животные сочетают в себе функции клетки и самостоятельного организма. (Физиологически клетка Protozoa аналогична не отдельным клеткам многоклеточных животных, а целому многоклеточному организму.

Простейшим свойственны все функции, присущие любым живым организмам: питание, обмен веществ, выделение, восприятие внешних разд-ражений и реакция на них, движение, рост, размножение и смерть.

Простейшие Строение клетки

Ядро и цитоплазма, как указывалось,- основные структурные и функциональные компоненты любой клетки, в том числе и одноклеточных животных. Тело последних содержит органеллы, скелетные и сократительные элементы и разнообразные включения. Оно всегда покрыто клеточной мембраной, более или менее тонкой, но отчетливо видимой в электронном микроскопе. Цитоплазма простейших жидкая, но вязкость ее различна у разных видов и изменяется в зависимости от состояния животного и от окружающей среды (ее температуры и химического состава). У большинства видов цитоплазма прозрачная или молочно-белая, но у некоторых окрашена в голубой или зеленоватый цвет (Stentor, Fabrea sali- па). Химический состав ядра и цитоплазмы простейших изучен далеко не полно, главным образом из-за малых размеров этих животных. Известно, что основу цитоплазмы и ядра, как у всех животных, составляют белки. Нуклеиновые кислоты тесно связаны с белками, они образуют нуклео- протеиды, роль которых в жизни всех организмов чрезвычайно велика. ДНК (дезоксирибонуклеиновая кислота) входит в состав хромосом ядра простейших и обеспечивает передачу наследственной информации от поколения к поколению. РНК (рибонуклеиновая кислота) обнаружена у простейших как в ядре, так и в цитоплазме. Она осуществляет реализацию наследственных свойств одноклеточных организмов, закодированных в ДНК, так как играет ведущую роль в синтезе белков.

Весьма важные химические компоненты цитоплазмы - жироподобные вещества липиды - принимают участие в обмене веществ. Часть из них содержит фосфор (фосфатиды), многие связаны с белками и образуют липопротеиновые комплексы. В цитоплазме присутствуют также запасные питательные вещества в виде включений - капелек или гранул. Это углеводы (гликоген, парамил), жиры и липиды. Они служат энергетическим резервом организма простейших.

Кроме органических веществ, в состав цитоплазмы входит большое количество воды, присутствуют минеральные соли (катионы: К+, Са2+, Mg2+, Na+, Fe3+ и анионы: Cl~, Р043“, N03“). В цитоплазме простейших обнаружены многие ферменты, участвующие в обмене веществ: протеазы, обеспечивающие расщепление белков; карбогидразы, расщепляющие полисахариды; липазы, содействующие перевариванию жиров; большое число энзимов, регулирующих газообмен, а именно щелочная и кислая фосфатазы, оксидазы, пероксидазы и цитохромоксидазы.

Прежние представления о фибриллярной, гранулярной или пенисто-ячеистой структуре цитоплазмы простейших были основаны на исследованиях фиксированных и окрашенных препаратов. Новые методы исследования простейших (в темном поле, в поляризованном свете, с применением прижизненного окрашивания и электронного микроскопирования) позволили установить, что цитоплазма простейших является сложной динамической системой гидрофильных коллоидов (преимущественно белковых комплексов), которая имеет жидкую или полужидкую консистенцию. При ультрамикроскопическом исследовании в темном поле цитоплазма простейших кажется оптически пустой, видны лишь органоиды клетки и ее включения.

Коллоидное состояние белков цитоплазмы обеспечивает изменчивость ее структуры. В цитоплазме постоянно происходят изменения агрегатного состояния белков: они переходят из жидкого состояния (золя) в более твердое, желатинообразное (геля). С этими процессами связано выделение более плотного слоя эктоплазмы, образование оболочки - пелликулы и амебоидное движение многих простейших.

Ядра простейших, как и ядра клеток многоклеточных, состоят из хроматинового материала, ядерного сока, содержат ядрышки и ядерную оболочку. Большинство простейших содержит лишь по одному ядру, но имеются и многоядерные формьк. При этом ядра могут быть одинаковыми (многоядерные амебы из рода Pelomyxa, многоядерные жгутиковые Polymastigida, Opalinida) или различаться по форме и функции. В последнем случае говорят о ядерной дифференцировке, или я дерном дуализме. Так, всему классу инфузорий и некоторым фораминиферам свойствен ядерный дуалйзм^т. е. неодинаковые по форме и функции ядра.

Бее виды простейших, как и другие организмы, подчиняются закону постоянства числа хромосом. Число их может быть одинарным, или гаплоидным (большинство жгутиковых и споровики), либо двойным, или диплоидным (инфузории, опалины и, по-видимому, саркодовые). Число хромосом у разных видов простейших варьирует в больших пределах: от 2-4 до 100-125 (в гаплоидном наборе). Кроме того, наблюдаются ядра с кратным увеличением числа наборов хромосом. Их называют полиплоидными. Выяснено, что большие ядра, или макронуклеусы, инфузорий и ядра некоторых радиолярий полиплоидны. Весьма вероятно, что ядро Amoeba proteus тоже полиплоидно, число хромосом у этого вида доходит до 500.

Размножение Деление ядра

Основным типом деления ядер как простейших, так и многоклеточных организмов является митоз, или кариокинез. При митозе происходит правильное равномерное распределение хромосомного материала между ядрами делящихся клеток. Это обеспечивается продольным расщеплением каждой хромосомы на две дочерние в метафазе митоза, причем обе дочерние хромосомы отходят к разным полюсам делящейся клетки.

Митотическое деление ядра грегарины Monocystis magna:
1, 2 - профаза; 3 - переход к метафазе; 4, 5 - метафаза; 6 - ранняя анафаза; 7, 8 - поздняя
анафаза; 9, 10 - телофаза.

При делении ядра грегарины Monocystis magna можно наблюдать все фигуры митоза, свойственные многоклеточным. В профазе в ядре видны нитевидные хромосомы, некоторые из них связаны с ядрышком (рис. 1, 1, 2). В цитоплазме можно различить две центросомы, в центре которых расположены центриоли с расходящимися радиально лучами звезды. Центросомы сближаются с ядром, примыкают к его оболочке и перемещаются к противоположным полюсам ядра. Ядерная оболочка растворяется, и формируется ахроматиновое веретено (рис. 1, 2-4). Происходит спира- лизация хромосом, вследствие чего они сильно укорачиваются и собираются в центре ядра, ядрышко растворяется. В метафазе хромосомы перемещаются в экваториальную плоскость. При этом каждая хромосома состоит из двух хроматид, лежащих параллельно друг другу и скрепленных одним центромером. Фигура звезды вокруг каждой центросомы исчезает, а центриоли делятся пополам (рис. 1, 4, 5). В анафазе центромеры каждой хромосомы делятся пополам и их хроматиды начинают расходиться к полюсам веретена. Характерно для простейших, что тянущие нити веретена, прикрепленные к центромерам, различимы лишь у некоторых видов. Все веретено вытягивается, а его нити, идущие непрерывно от полюса к полюсу, удлиняются. Расхождение хроматид, превратившихся в хромосомы, обеспечивают два механизма: растаскивание их под действием сокращения тянущих нитей веретена и вытягивание непрерывных нитей веретена. По-следнее приводит к удалению полюсов клетки друг от друга (рис. 1, 6", 7). В телофазе процесс идет в обратном порядке: на каждом полюсе группа хромосом одевается ядерной оболочкой. Хромосомы деспирализу- ются и утончаются, вновь формируются ядрышки. Веретено исчезает, а вокруг разделившихся центриолей образуются две самостоятельные центросомы с лучами звезды. Каждая дочерняя клетка имеет две центросомы - будущие центры следующего митотического деления (рис. 1, 9,10). Вслед за делением ядра обычно делится и цитоплазма. Однако у некоторых простейших, в том числе и у Monocystis, происходит ряд последовательных делений ядер, в результате которых в жизненном цикле возникают временно многоядерные стадии. Позднее вокруг каждого ядра обособляется участок цитоплазмы и формируется одновременно много мелких клеток.

От описанного выше процесса митоза бывают различные отклонения: ядерная оболочка может сохраняться в течение всего митотического деления, ахроматиновое веретено может формироваться под оболочкой ядра, у некоторых форм не образуются центриоли. Наиболее значительны отклонения у некоторых эвгленовых (Euglenida): у них отсутствует типичная метафаза, а веретено деления проходит вне ядра. В метафазе хромосомы, состоящие из двух хроматид, располагаются вдоль оси ядра, экваториальная пластинка не формируется, сохраняются ядерная оболочка и ядрышко, последнее делится пополам и переходит в дочерние ядра. Никаких принципиальных различий между поведением хромосом в митозе у простейших и многоклеточных нет.

До применения новых методов исследования деление ядер многих простейших описывалось как амитоз, или прямое деление. Под истинным амитозом сейчас понимают деление ядер без правильного рас-хождения хроматид (хромосом) в дочерние ядра. В результате происходит образование ядер с неполными наборами хромосом. Они не способны в дальнейшем к нормальным митотическим делениям. У простейших таких делений ядер в норме ожидать трудно. Амитоз наблюдается факультативно как более или менее патологический процесс.

Тело простейших устроено довольно сложно. В пределах одной клетки происходит дифференциация ее отдельных частей, которые выполняют различные функции. Так, по аналогии с органами многоклеточных животных эти части простейших были названы органоидами или о р г а н е л л а м и. Различают органеллы движения, питания, восприятия световых и иных раздражений, выделительные органеллы и т. п.

Движение

Органеллами движения у Protozoa служат псевдоподии, или ложноножки, жгутики и реснички. Псевдоподии образуются большей частью в момент движения и могут исчезать, как только простейшее прекращает движение. Псевдоподии - это временные плазматические выросты тела простейших, не имеющих постоянной формы. Их оболочка представлена очень тонкой (70-100 А) и эластичной клеточной мембраной. Псевдоподии характерны для саркодовых, некоторых жгутиковых и споровиков.

Жгутики и реснички представляют собой постоянные выросты наружного слоя цитоплазмы, способные к ритмическим движениям. Ультратонкое строение этих органелл изучалось с помощью электронного микроскопа. Было выяснено, что они устроены в значительной степени одинаково. Свободная часть жгутика или реснички отходит от поверхности клетки.

Внутренняя часть погружена в эктоплазму и называется базальным тельцем или бле- фаропластом. На ультратонких срезах жгутика или реснички можно различить 11 продольных фибрилл, 2 из которых расположены в центре, а 9 - по периферии (рис. 2). Центральные фибриллы у некоторых видов имеют спиральную исчерченность. Каждая периферическая фибрилла состоит из двух соединенных трубочек, или субфпбрилл. Периферические фибриллы переходят в базальное тельце, а центральные до него не доходят. Мембрана жгутика переходит в мембрану тела простейшего.

Несмотря на близость строения ресничек и жгутиков, характер их движения различен. Если жгутики совершают сложные винтовые движения, то работу ресничек проще всего сравнить с движением весел.

Кроме базального тельца, в цитоплазме некоторых простейших имеется парабазальное тельце. Базальное тельце является основой всего опорно-двигательного аппарата; кроме того, оно регулирует процесс митотического деления простейшего. Парабазальное тельце играет роль в обмене веществ простейшего, временами оно исчезает, а затем может появляться вновь.

Органы чувств

Простейшие обладают способностью определять интенсивность света (освещенность) с помощью светочувствительной органеллы - глазка. Изучение ультратонкого строения глазка морского жгутиконосца Chromulina psammobia показало, что в его состав входит видоизмененный жгутик, погруженный в цитоплазму.

В связи с различными типами питания, которые позднее будут разобраны подробно, у простейших весьма велико разнообразие пищеварительных органелл: от простых пищеварительных вакуолей или пузырьков до таких специализированных образований, как клеточный рот, ротовая воронка, глотка, порошица.

Выделительная система

Большинству простейших свойственна способность к перенесению неблагоприятных условий среды (пересыхание временных водоемов, жара, холод и т. п.) в форме цист. Готовясь к инцистированию, простейшее выделяет значительное количество воды, что ведет к повышению плотности цитоплазмы. Выбрасываются остатки пищевых частиц, исчеэают ресиички и жгутики, втягиваются псевдоподии. Понижается общий обмен веществ, формируется защитная оболочка, часто состоящая из двух слоев. Образованию цист у многих форм предшествует накопление в цитоплазме запасных питательных веществ.

Простейшие не теряют жизнеспособности в цистах очень долго. В опытах эти сроки превышали у рода Oicomonas (Protomonadida) 5 лет, у Нае- matococcus pluvialis - 8 лет, а для Peridinium cinctum максимальный срок выживания цист превысил 16 лет.

В форме цист простейшие переносятся ветром на значительные рас-стояния, что объясняет однородность фауны простейших на всем земном шаре. Таким образом, цисты не только несут защитную функцию, но и служат основным средством расселения простейших.

1. Введение…………………………………………………………………….2

2. Эволюция жизни на земле…………………………………………………3

2.1. Эволюция одноклеточных организмов………………………………3

2.2. Эволюция многоклеточных организмов……………………………..6

2.3. Эволюция растительного мира……………………….……………….8

2.4. Эволюция животного мира…………………………………………...10

2.5 Эволюция биосферы……………………………………..……….…….12

3. Заключение………………………………………………………………….18

4. Список литературы………………………………………………………….19

Введение.

Часто кажется, что организмы находятся всецело во власти среды: среда ставит им пределы, и в этих пределах они должны либо преуспеть, либо погибнуть. Но организмы и сами воздействуют на среду. Они изменяют ее непосредственно за недолгое свое существование и за долгие периоды эволюционного времени. Как известно, гетеротрофы поглощали питательные вещества из первичного «бульона» и что автотрофы способствовали появлению окислительной атмосферы, подготовив, таким образом, условия для возникновения и эволюции процесса дыхания.

Появление в атмосфере кислорода обусловило возникновение озонового слоя. Озон образуется из кислорода под воздействием ультрафиолетового излучения Солнца и действует как фильтр, который задерживает ультрафиолетовое излучение, губительное для белков и нуклеиновых кислот, и не дает ему дойти до поверхности Земли.

Первые организмы жили в воде, и вода экранировала их, поглощая энергию ультрафиолетового излучения. Первые поселенцы суши нашли здесь в изобилии солнечный свет, и минеральные вещества, так что в начале они были практически избавлены от конкуренции. Деревья и травы, покрывшие вскоре растительную часть земной поверхности, пополняли запас кислорода в атмосфере, кроме того, они изменяли характер водного стока на Земле и ускоряли процесс образования почв из горных пород. Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена – фотосинтеза и дыхания, а также с образованием эукариотической клеточной организации, содержащей ядерный аппарат.

Эволюция жизни на земле.

2.1 Эволюция одноклеточных организмов.

Самые ранние из бактерий (прокариоты) существовали уже около 3,5 млрд. лет назад. К настоящему времени сохранились два семейства бактерий: древние, или архебактерии (галофильные, метановые, термофильные), и эубактерии (все остальные). Таким образом, единственными живыми существами на Земле в течение 3 млрд. лет были примитивные микроорганизмы. Возможно, они представляли собой одноклеточные существа, сходные с современными бактериями, например с клостридиями, живущими на основе брожения и использования богатых энергией органических соединений, возникающих абиогенно под воздействием электрических разрядов и ультрафиолетовых лучей. Следовательно, в эту эпоху живые существа были потребителями органических веществ, а не их производителями.

Гигантский шаг на пути эволюции жизни был связан с возникновением основных биохимических процессов обмена – фотосинтеза и дыхания и с образованием клеточной организации, содержащей ядерный аппарат (эукариоты). Эти «изобретения», сделанные еще на ранних стадиях биологической эволюции, в основных чертах сохранились у современных организмов. Методами молекулярной биологии установлено поразительное однообразие биохимических основ жизни при огромном различии организмов по другим признакам. Белки почти всех живых существ состоят из 20 аминокислот. Нуклеиновые кислоты, кодирующие белки, монтируются из четырех нуклеотидов. Биосинтез белка осуществляется по единообразной схеме, местом их синтеза являются рибосомы, в нем участвуют и-РНК и т-РНК. Подавляющая часть организмов используют энергию окисления, дыхания и гликолиза, которая запасается в АТФ.

Различие между прокариотами и эукариотами заключается еще и в том, что первые могут жить как в бескислородной среде, так и в среде с разным содержанием кислорода, в то время как для эукариот, за немногим исключением, обязателен кислород. Все эти различия имели существование значение для понимания ранних стадий биологической эволюции.

Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменилось. Ко времени же появления, эукариот концентрация кислорода была высокой и относительно постоянной.

Первые фотосинтезирующие организмы появилась примерно около 3 млрд. лет назад. Это были анаэробные бактерии, предшественники современных фотосинтезирующих бактерий. Предполагается, что именно они образовали самые древние сред известных строматолитов. Объединение среды азотистыми органическими соединениями вызывало появление живых существ, способных использовать атмосферный азот. Такими организмами, способными существовать в среде, полностью лишенной органических углеродных и азотистых соединений, являются фотосинтезирующие азотфиксирующие сине-зеленые водоросли. Эти организмы осуществляли аэробный фотосинтез. Они устойчивы к продуцируемого ими кислороду и могут использовать его для собственного метаболизма. Поскольку сине-зеленые водоросли возникли в период, когда концентрация кислорода в атмосфере колебалась, вполне допустимо, что они – промежуточные организмы между анаэробами и аэробами.

Фотосинтезирующая деятельность первичных одноклеточных имела три последствия, оказавшие решающее влияние на всю дальнейшую эволюцию живого. Во-первых, фотосинтез освободил организмы от конкуренции за природные запасы абиогенных органических соединений, количество которых в среде значительно сократилось. Резвившееся посредством фотосинтеза автотрофное питание и запасание питательных готовых веществ в растительных тканях создали затем условия для появления громадного разнообразия автотрофных и гетеротрофных организмов. Во-вторых, фотосинтез обеспечивал насыщение атмосферы достаточным количеством кислорода для возникновения и развития организмов, энергетический обмен которых основан на процессах дыхания. В-третьих, в результате фотосинтеза в верхней части атмосферы образовался озоновый экран, защищающий земную жизнь от губительного ультрафиолетового излучения космоса.

Еще одно значительное отличие прокариот от эукариот заключается в том, что у вторых центральным механизмом обмена является дыхание, у большинства же прокариот энергетический обмен осуществляется в процессах брожения. Сравнение метаболизма прокариот и эукариот приводит к выводу об эволюционной связи между ними. Вероятно, анаэробное брожение появилось на более ранних стадия эволюции. После возникновения в атмосфере достаточного количества свободного кислорода аэробный метаболизм оказался намного выгоднее, так как при окислении углеродов в 18 раз увеличивается выход биологически полезной энергии в сравнении с брожением. Тем самым, к анаэробному метаболизму присоединился аэробный способ извлечения энергии одноклеточными организмами.

Точно неизвестно когда появились эукариотические клетки, по данным исследований можно сказать что их возраст примерно 1,5 млрд. лет назад.

В эволюции одноклеточной организации выделяются промежуточные ступени, связанные с усложнением строения организма, совершенствованием генетического аппарата и способов размножения.

Самая примитивная стадия – агамная аракариогиная – представлена цианеями и бактериями. Морфология этих организмов наиболее проста в сравнении с другими одноклеточными. Однако уже на этой стадии появляется дифференциация на цитоплазму, ядерные элементы, базальные зерна, цитоплазматическую мембрану. У бактерий известен обмен генетическим материалом посредством конъюгации. Большое разнообразие видов бактерий, способность существовать в самых разных условиях среды свидетельствуют о высокой адаптивности их организации.

Следующая стадия – агамная эукариогиная – характеризуется дальнейшей дифференциацией внутреннего строения с формированием высокоспециализированных органоидов (мембраны, ядро, цитоплазма, рибосомы, митохондрии и др.). Особо существенной здесь была эволюция ядерного аппарата – образование настоящих хромосом в сравнении с прокариотами, у которых наследственное вещество диффузно распределено по всей клетке. Эта стадия характерна для простейших, прогрессивная эволюция которых шла по пути увеличения числа одинаковых органоидов (полимеризация), увеличения числа хромосом в ядре (полиплоидизация), появление генеративных и вегетативных ядер – макронуклеуса (ядерный дуализм). Среди одноклеточных эукариотных организмов имеется много видов с агамным размножением (голые амебы, раковинные корненожки, жгутиконосцы).

Прогрессивным явлением в филогинезе простейших было возникновение у них полового размножения (гамогонии), которая отличается от обычной конъюгации. У простейших имеется мейоз с двумя делениями и кроссинговером на уровне хроматид, и образуются гаметы с гаплоидным набором хромосом. У некоторых жгутиковых гаметы почти неотличимы от бесполых особей и нет еще разделения на мужские и женские гаметы, т.е. наблюдается изогамия. Постепенно в ходе прогрессивной эволюции происходит переход от изогамии к анизогамии, или разделению генеративных клеток на женские и мужские, и к анизогамной копуляции. При слиянии гамет образуется диплоидная зигота. Следовательно, у простейших наметился переход от агамной эукаритной стадии к зиготной – начальной стадии ксеногамии (размножение путем перекрестного оплодотворения). Последующее развитие уже многоклеточных организмов шло по пути совершенствования способов ксеногамного размножения.

Загадочная группа микроскопических одноклеточных организмов, рассматриваемая как подцарство царства Животные, а иногда выделяемая в отдельное царство.

Простейшие одноклеточные

Впервые люди узнали о существовании простейших в VII веке из открытия голландского натуралиста , именно он первым удостоился наблюдать их в капле воды, в изобретенный им же микроскоп.

За многие годы развития биологии, с появлением электронной микроскопии и генетики эта группа организмов все больше изучалась и систематика ее претерпевала значительные изменения.

Сегодня их все чаще определяют в отдельное царство, так как среди простейших одноклеточных есть организмы, обладающие признаками, отличными от признаков животных. Например, способностью к фотосинтезу, характерной для растений, обладает Эвглена зеленая. Или, к примеру, тип Лабиринтулы — раньше относили к грибам.

Клетка простейшего одноклеточного организма имеет организацию, общую для клеток эукариот. Но так же у большинства простейших имеются специфические органоиды:

  • сократительные вакуоли, служащие для удаления излишка жидкости и поддержания нужного осмотического давления;
  • разнообразные органоиды движения: жгутики, реснички и псевдоподии (ложноножки). Ложноножки, как видно из названия, настоящими органеллами не являются, они представляют всего лишь выпячивания клетки.

Подцарство (или царство) Простейшие одноклеточные представлено 7 основными типами:


Рассмотрим типы более подробно

Тип Саркомастигофоры

Подразделяется на три подтипа: Жгутиковые, Опалины, Саркодовые.

Жгутиковые - группа организмов, как видно из названия для них характерны общие органоиды движения - жгутики.

Места обитания: пресные воды, моря, почвы. Встречаются жгутиковые, обитающие в многоклеточных организмах. Для жгутиковых характерно сохранение постоянной форме тела, благодаря пелликуле, или панцирю.

Размножаются в основном бесполым путем: продольным делением надвое.

Типы питания гетеротрофный, автотрофный, миксотрофный.

Строение рассмотрим на примере Эвглены зеленой .


  • Для нее характерен миксотрофный (смешанный) тип питания.
  • Имеются специальные органоиды - хлорофиллсодержищие хроматофоры, в которых происходит процесс фотосинтеза, аналогичный фотосинтезу растений.
  • В связи со способностью к фотосинтезу у Эвглены зеленой имеется светочувствительный органоид - стигма, его еще иногда называют светочувствительным глазком.
  • Удаление излишков жидкости происходит благодаря работе сократительной вакуоли.



Некоторые виды трипаносом вызывают сонную болезнь . Переносчиком Африканского трипаносомоза (так по-научному называется эта болезнь) является муха цеце. Это кровососущее насекомое.

Трипаносомы. Плавают и вызывают опасную болезнь.




Лямблия . Похожа на грушу. Мнемоническое правило: лямблия в форме груши, по этому чтобы ей не заразиться, надо мыть грушу.

Саркодовые - простейшие, не имеющие постоянной формы тела.

Органоиды движения - псевдоподии (ложноножки). Раньше саркодовых и жгутиковых относили к двум разным типам, противопоставляя их органоиды движения: псевдоподии и жгутики. Но оказалось, что на некоторых этапах развития у саркодовых имеются жгутики, а некоторые организмы обладают признаками как жгутиковых, так и саркодовых.

Подтип саркодовые включает классы: Корненожки, Радиолярии (Лучевики), Солнечники.

Корненожки . Этот класс включает отряды: Амебы, раковинные амебы, фораминиферы.



  • Амебы питаются фагоцитозом. Вокруг захваченного кусочка пищи образуется пищеварительная вакуоль.
  • Размножаются делением надвое.
  • Если Эвглена зеленая двигается в сторону света (так как он ей нужен для фотосинтеза), то Амеба обыкновенная — наоборот — движется от света. Так же амеба избегает других раздражителей.

Обычно рассматривают такой опыт: в каплю воды с амебой с одной стороны кладут кристаллик соли, и можно наблюдать движение амебы в обратную сторону.

Раковинные амебы . Они имеют схожее строение с амебами, только имеют раковину, с отверстием (устье) из которого «выглядывают» псевдоподии. Все раковинные амебы свободноживущие, обитают в пресных водах. Так как раковина не может разделиться надвое, деление происходит по-особому: образуется дочерняя особь, но она не сразу отделяется от материнской. Вокруг дочерней образуется новая раковина. Потом амебы разъединяются.


Фораминиферы - один из самых многочисленных отрядов простейших одноклеточных — корненожек. Входят в состав морского планктона. У фораминифер, как и у раковинных амеб, есть раковина.


Радиолярии очень интересные микроорганизмы, входят в состав морского планктона. Для них характерно наличие внутреннего скелета. У радиолярий наибольшее количество хромосом из всех живых существ.


Радиолярии, Фораминиферы и раковинные амебы, умирая, оставляют после себя раковины и внутренние скелеты. Скопление всего этого добра образует залежи известняка, мела, кварца и прочего.

Солнечники - немногочисленная группа простейших. Свое название получили из-за схожести внешнего вида псевдоподий с лучами солнца. Такие псевдоподии называются аксоподиями.

Тип Инфузории

Характерные особенности:

  • постоянная форма тела, благодаря наличию пелликулы;
  • для некоторых инфузорий характерны специфические защитные органеллы;
  • ядерный дуализм, т. е. наличие двух ядер: полиплоидного макронуклеуса (вегетативного ядра) и диплоидного микронуклеуса (генеративного ядра). Такая ситауция с ядрами необходима для осуществления полового процесса: . А непосредственно размножение только бесполое: продольным делением надвое.
  • Органеллы передвижения - реснички. Строение ресничек такое же, как у жгутиков.

Строение рассмотрим на примере Инфузории-туфельки. Это - классика, это знать надо.

Инфузория-туфелька - хищник. Питается бактериями. Жертва захватывается специализированными ресничками и направляется в клеточный рот, затем следует клеточная глотка, затем пищеварительная вакуоль. Не переваренные остатки выбрасываются через порошицу во внешнюю среду.

В пищеварительной системе жвачных животных обитают симбиотические инфузории, помогающие переваривать клетчатку:

Инфузория-трубач

Сувойки - инфузории ведущие прикрепленный образ жизни.

Тип Апикомплексы

Например, простейшие рода Плазмодии вызывают опасное заболевание - малярию.


Тип Лабиринтулы

Простейшие одноклеточные свободноживущие колониальные простейшие, обитающие на морских водорослях. Ранее относили к грибам. Название такое получили потому, что колония действительно напоминает лабиринт.

Тип Асцетоспоридии

Тип Миксоспоридии

Тип Микроспоридии

Итак, мы рассмотрели типы царства (подцарства) Простейших одноклеточных организмов. Чтобы все знания закрепились, давайте посмотрим на систематику:

Не смотря на свои небольшие размеры, простейшие одноклеточные имеют огромное значение:

  • простейшие входят в пищевые цепи;
  • образуют планктон;
  • выполняют роль сапрофитов, поглощая разлагающиеся останки;
  • простейшие очищают водоемы не только от гниющих остатков, но и от бактерий;
  • участвуют в образовании почв и залежей мела и известняка.
  • являются хорошими индикаторами чистоты воды.
  • автотрофные и миксотрофные простейшие, вместе с растениями выполняют очень важную миссию - пополнение атмосферы кислородом.

Тело которых состоит из одной клетки, будучи вместе с тем самостоятельным целостным организмом со всеми присущими ему функциями. По уровню организации одноклеточные относятся к прокариотам ( , археи) и эукариотам (некоторые , простейшие, грибы). Могут образовывать колонии. Общее число видов простейших превышает 30 тыс.

Некоторые виды одноклеточных животных

Возникновение одноклеточных животных сопровождалось ароморфозами: 1. Появились (двойной набор хромосом) и ограниченное оболочкой ядро как структура, отделяющая генетический аппарат клетки от цитоплазмы и создающая специфическую среду для взаимодействия в . 2. Возникли органоиды, способные к самовоспроизведению. 3. Образовались внутренние мембраны. 4. Появился высокоспециализированный и динамичный внутренний скелет – цитоскелет. 5. Возник половой процесс как форма обмена генетической информацией, между двумя особями.

Строение . План строения простейших соответствует общим чертам организации эукариотической клетки. Генетический аппарат одноклеточных представлен одним или несколькими ядрами. Если есть два ядра, то, как правило, одно из них, диплоидное, – генеративное, а другое, полиплоидное, – вегетативное. Генеративное ядро выполняет функции, связанные с размножением. Вегетативное ядро обеспечивает все процессы жизнедеятельности организма.

Цитоплазма состоит из светлой наружной части, лишенной органоидов, – эктоплазмы и более темной внутренней части, содержащей основные органоиды, – эндоплазмы. В эндоплазме имеются органоиды общего назначения.

В отличие от клеток многоклеточного организма у одноклеточных есть органоиды специального назначения. Это органоиды движения – ложноножки – псевдоподии; , реснички. Имеются и органоиды осморегуляции – сократительные вакуоли. Есть специализированные органоиды, обеспечивающие раздражимость.

Одноклеточные с постоянной формой тела обладают постоянными пищеварительными органоидами: клеточной воронкой, клеточным ртом, глоткой, а также органоидом выделения непереваренных остатков – порошицей.

В неблагоприятных условиях существования ядро с небольшим объемом цитоплазмы, содержащим необходимые органоиды, окружается толстой многослойной капсулой – цистой и переходит от активного состояния к покою. При попадании в благоприятные условия цисты «раскрываются», и из них выходят простейшие в виде активных и подвижных особей.

Размножение . Основная форма размножения простейших – бесполое размножение путем митотического деления клетки. Однако часто встречается половой процесс.

Среда обитания простейших чрезвычайно разнообразна. Многие из них живут в . Некоторые входят в состав бентоса – организмов, обитающих в толще воды, на различных глубинах. Многочисленные виды

Публикации по теме