Активный транспорт веществ через мембрану. Виды активного транспорта веществ через мембрану

В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы . То есть, существует 2 принципиальных типа транспорта ионов через мембрану: пассивный и активный.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

  • концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
  • концентрация K+ внутри клетки выше, чем снаружи.

Механизм работы натрий-калиевого насоса. НКН за один цикл переносит 3 иона Na+ из клетки и 2 иона K+ в клетку. Это происходит из-за того, что молекула интегрального белка может находиться в 2 положениях. Молекула белка, образующая канал, имеет активный участок, который связывает либо Na+, либо K+. В положении (конформации) 1 она обращена внутрь клетки и может присоединять Na+. Активируется фермент АТФаза, расщипляющая АТФ до АДФ. Вследствие этого молекула превращается в конформацию 2. В положении 2 она обращена вне клетки и может присоединять K+. Затем конформация вновь меняет и цикл повторяется.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами :

  • пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
  • всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами :

  • пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
  • могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня потенциала покоя, канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

  • хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
  • потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение потенциала покоя (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

БИОФИЗИКА ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ.

Вопросы для самопроверки

1. Какие объекты включает в себя инфраструктура автотранспортного комплекса?

2. Назовите основные компоненты загрязнения окружающей среды автотранспортным комплексом.

3. Назовите основные причины формирования загрязнения окружающей среды автотранспортным комплексом.

4. Назовите источники, опишите механизмы образования и дайте характеристику составу загрязнений атмосферы производственными зонами и участками предприятий автомобильного транспорта.

5. Приведите классификацию сточных вод предприятий автомобильного транспорта.

6. Назовите и дайте характеристику основным загрязнениям сточных вод предприятий автомобильного транспорта.

7. Охарактеризуйте проблему отходов производственной деятельности предприятий автомобильного транспорта.

8. Дайте характеристику распределению массы вредных выбросов и отходов АТК по их видам.

9. Проанализируйте вклад объектов инфраструктуры АТК в загрязнение окружающей среды.

10. Какие виды нормативов составляют систему природоохранных нормативов. Дайте характеристику каждому из этих видов нормативов.

1. Бондаренко Е.В. Экологическая безопасность автомобильного транспорта: учебное пособие для вузов / Е.В. Бондаренко, А.Н. Новиков, А.А. Филиппов, О.В. Чекмарёва, В.В. Васильева, М.В. Коротков // Орёл: ОрёлГТУ, 2010. – 254 с. 2. Бондаренко Е.В. Дорожно-транспортная экология: [Текст]: учеб. пособие / Е.В. Бондаренко, Г.П. Дворников Оренбург: РИК ГОУ ОГУ, 2004. – 113 с. 3. Каганов И.Л. Справочник по санитарии и гигиене на автотранспортных предприятиях. [Текст] / И.Л. Каганов, В.Д.Морошек Мн.: Беларусь, 1991. – 287 с. 4. Картошкин А.П. Концепция сбора и переработки отработанных смазочных масел / А.П. Картошкин // Химия и технология топлив и масел, 2003. - №4. – С. 3 – 5. 5. Луканин В.Н. Промышленно-транспортная экология [Текст] / В.Н. Луканин, Ю.В. Трофименко М.: Высш. шк., 2001. - 273 с. 6. Российская автотранспортная энциклопедия. Техническая эксплуатация, обслуживание и ремонт автотранспортных средств. – Т.3. – М.: РБООИП «Просвещение», 2001. – 456 с.

Клетка - открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Мембрана клетки является избирательным барьером для различных веществ, находящихся внутри и снаружи клетки. Существует два вида мембранного транспорта: пассивный и активный транспорт.



Все виды пассивного транспорта основаны на принципе диффузии. Диффузия является результатом хаотических независимых движений многих частиц. Диффузия постепенно уменьшает градиент концентрации до тех пор, пока не наступит состояние равновесия. При этом в каждой точке установится равная концентрация, и диффузия в обоих направлениях будет осуществляться в равной степени.Диффузия является пассивным транспортом, поскольку не требует затрат внешней энергии. Существует несколько видов диффузии в плазматической мембране:

1 ) Свободная диффузия.

БИОФИЗИКА ТРАНСПОРТА ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ.

Вопросы для самопроверки

1. Какие объекты включает в себя инфраструктура автотранспортного комплекса?

2. Назовите основные компоненты загрязнения окружающей среды автотранспортным комплексом.

3. Назовите основные причины формирования загрязнения окружающей среды автотранспортным комплексом.

4. Назовите источники, опишите механизмы образования и дайте характеристику составу загрязнений атмосферы производственными зонами и участками предприятий автомобильного транспорта.

5. Приведите классификацию сточных вод предприятий автомобильного транспорта.

6. Назовите и дайте характеристику основным загрязнениям сточных вод предприятий автомобильного транспорта.

7. Охарактеризуйте проблему отходов производственной деятельности предприятий автомобильного транспорта.

8. Дайте характеристику распределению массы вредных выбросов и отходов АТК по их видам.

9. Проанализируйте вклад объектов инфраструктуры АТК в загрязнение окружающей среды.

10. Какие виды нормативов составляют систему природоохранных нормативов. Дайте характеристику каждому из этих видов нормативов.

1. Бондаренко Е.В. Экологическая безопасность автомобильного транспорта: учебное пособие для вузов / Е.В. Бондаренко, А.Н. Новиков, А.А. Филиппов, О.В. Чекмарёва, В.В. Васильева, М.В. Коротков // Орёл: ОрёлГТУ, 2010. – 254 с. 2. Бондаренко Е.В. Дорожно-транспортная экология: [Текст]: учеб. пособие / Е.В. Бондаренко, Г.П. Дворников Оренбург: РИК ГОУ ОГУ, 2004. – 113 с. 3. Каганов И.Л. Справочник по санитарии и гигиене на автотранспортных предприятиях. [Текст] / И.Л. Каганов, В.Д.Морошек Мн.: Беларусь, 1991. – 287 с. 4. Картошкин А.П. Концепция сбора и переработки отработанных смазочных масел / А.П. Картошкин // Химия и технология топлив и масел, 2003. — №4. – С. 3 – 5. 5. Луканин В.Н. Промышленно-транспортная экология [Текст] / В.Н. Луканин, Ю.В. Трофименко М.: Высш. шк., 2001. — 273 с. 6. Российская автотранспортная энциклопедия. Техническая эксплуатация, обслуживание и ремонт автотранспортных средств. – Т.3. – М.: РБООИП «Просвещение», 2001. – 456 с.

Клетка — открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Транспорт веществ через биологические мембраны — необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Мембрана клетки является избирательным барьером для различных веществ, находящихся внутри и снаружи клетки. Существует два вида мембранного транспорта: пассивный и активный транспорт.

Все виды пассивного транспорта основаны на принципе диффузии. Диффузия является результатом хаотических независимых движений многих частиц. Диффузия постепенно уменьшает градиент концентрации до тех пор, пока не наступит состояние равновесия. При этом в каждой точке установится равная концентрация, и диффузия в обоих направлениях будет осуществляться в равной степени.Диффузия является пассивным транспортом, поскольку не требует затрат внешней энергии. Существует несколько видов диффузии в плазматической мембране:

1 ) Свободная диффузия.

123456Следующая ⇒

Читайте также:

Видео: Transport in Cells Diffusion and Osmosis, part — 1 Транспорт в клетках: Диффузия и Осмос, часть — 1

Диффузию через клеточную мембрану разделяют на два подтипа: простую диффузию и облегченную диффузию. Простая диффузия означает, что кинетическое движение молекул или ионов происходит через отверстие в мембране или межмолекулярные пространства без какого-либо взаимодействия с мембранными белками-переносчиками. Скорость диффузии определяется количеством вещества, скоростью кинетического движения, числом и размером отверстий в мембране, через которые могут перемещаться молекулы или ионы.

Видео: Транспорт веществ в организме

Облегченная диффузия требует взаимодействия с белком-переносчиком, который способствует транспорту молекул или ионов, связываясь с ними химически и в такой форме курсируя через мембрану.

Простая диффузия может происходить сквозь клеточную мембрану двумя способами: (1) через межмолекулярные промежутки липидного бислоя, если диффундирующее вещество растворимо в жирах- (2) через заполненные водой каналы, пронизывающие некоторые крупные транспортные белки, как показано на рис.

Транспорт веществ через мембрану. Активный и пассивный транспорт веществ через мембрану

Диффузия жирорастворимых веществ через липидный бислой. Одним из наиболее важных факторов, определяющих скорость диффузии вещества через липидный бислой, является его растворимость в липидах. Например, кислород, азот, углекислый газ и спирты имеют более высокую растворимость в липидах, поэтому могут непосредственно растворяться в липидном бислое и диффундировать через клеточную мембрану точно так же, как диффундируют водорастворимые вещества в водных растворах. Очевидно, что величина диффузии каждого из этих веществ прямо пропорциональна их растворимости в липидах. Этим путем может транспортироваться очень большое количество кислорода. Таким образом, кислород может доставляться внутрь клеток практически так же быстро, как если бы клеточной мембраны не существовало.

Диффузия воды и других нерастворимых в жирах молекул через белковые каналы. Несмотря на то, что вода совсем не растворяется в липидах мембраны, она легко проходит через каналы в белковых молекулах, пронизывающих мембрану насквозь. Поражает быстрота, с которой молекулы воды могут двигаться сквозь большинство клеточных мембран. Например, общее количество воды, которое диффундирует в любом направлении через мембрану эритроцита в секунду, примерно в 100 раз больше, чем объем самой клетки.

Сквозь каналы, представленные белковыми порами , могут проходить и другие нерастворимые в липидах молекулы, если они растворимы в воде и достаточно малы. Однако увеличение размеров таких молекул быстро снижает их проникающую способность. Например, возможность проникновения мочевины через мембрану примерно в 1000 раз меньше, чем воды, хотя диаметр молекулы мочевины всего на 20% больше диаметра молекулы воды. Тем не менее, учитывая поразительную скорость прохождения воды, проникающая способность мочевины обеспечивает ее быстрый транспорт через мембрану в течение нескольких минут.

Диффузия через белковые каналы

Компьютерные трехмерные реконструкции белковых каналов продемонстрировали наличие трубчатых структур, пронизывающих мембрану насквозь - от внеклеточной до внутриклеточной жидкости. Следовательно, вещества могут двигаться по этим каналам путем простой диффузии с одной стороны мембраны на другую. Белковые каналы отличаются двумя важными особенностями: (1) они часто избирательно проницаемы для определенных веществ- (2) многие каналы могут открываться или закрываться с помощью ворот.

Видео: Мембранные потенциалы — Часть 1

Избирательная проницаемость белковых каналов . Многие белковые каналы высокоизбирательны для транспорта одного или нескольких специфических ионов или молекул. Это связано с собственными характеристиками канала (диаметром и формой), а также с природой электрических зарядов и химических связей выстилающих его поверхностей. Например, один из важнейших белковых каналов - так называемый натриевый канал - имеет диаметр от 0,3 до 0,5 нм, но, что более важно, внутренние поверхности этого канала заряжены сильно отрицательно. Эти отрицательные заряды могут затягивать мелкие дегидратированные ионы натрия внутрь каналов, фактически вытягивая эти ионы из окружающих их молекул воды. Оказавшись в канале, ионы натрия диффундируют в любом направлении согласно обычным правилам диффузии. В связи с этим натриевый канал специфически избирателен для проведения ионов натрия.

Эти каналы несколько меньше, чем натриевые каналы , их диаметр составляет лишь около 0,3 нм, однако они не заряжены отрицательно и имеют иные химические связи. Следовательно, нет выраженной силы, тянущей ионы внутрь канала, и ионы калия не освобождаются от их водной оболочки. По размеру гидратированная форма иона калия значительно меньше гидратированной формы иона натрия, поскольку ион натрия притягивает гораздо больше молекул воды, чем ион калия. Следовательно, более мелкие гидратированные ионы калия легко могут проходить через этот узкий канал, в то время как более крупный гидратированный ион натрия «выбраковывается», что и обеспечивает избирательную проницаемость для специфического иона.

Источник: http://meduniver.com
Внимание, только СЕГОДНЯ!

Транспорт веществ: механизмы проникновения веществ в клетку

Пассивный транспорт

Перемещение вещества (ионов или небольших молекул) по градиенту концентрации. Осуществляется без затрат энергии путем простой диффузии, осмоса или облегченной диффузии с помощью белков-переносчиков.

Активный транспорт

Перенос веществ (ионов или небольших молекул) с помощью белков-переносчиков против градиента концентрации. Осуществляется с затратами АТФ.

Эндоцитоз

Поглощение веществ (крупных частиц или макромолекул) путем окружения их выростами цитоплазматической мембраны с образованием окруженных мембраной пузырьков.

Экзоцитоз

Выделение веществ (крупных частиц или макромолекул) из клетки путем окружения их выростами цитоплазматической мембраны с образованием окруженных мембраной пузырьков.

Фагоцитоз и обратный фагоцитоз

Поглощение и выделение твердых и крупных частиц. Характерны для клеток животных и человека.

Пиноцитоз и обратный пиноцитоз

Поглощение и выделение жидких и растворенных частичек. Характерны для клеток растений и животных.

Кириленко А. А. Биология.

ТРАНСПОРТ ВЕЩЕСТВ ЧЕРЕЗ МЕМБРАНУ

ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

химиче­ской природы переносимого вещества и его концентрации от разме­ров

Пассивным транспортом

Путем простой диффузии осмоса.

облегченной диффузии.

белки-переносчики и белки-каналы. белком-переносчиком,

Белки-каналы

«ворота», которые открываются на короткое время, а затем закрываются.

В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом

натриево-калиевого насоса

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ.

В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

Унипорт - копортеров , или сопряженных переносчиков. симпорта антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов. Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки.

В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + — каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов. Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

электрогенными насосами.

характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной.

22. Транспорт веществ через мембрану. Активный и пассивный транспорт

В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом

Фагоцитоз -

псевдоподии, фагосомой.

Пиноцитоз

Окаймленные ямки клатрина. окаймленный пузырек,

Экзоцитоз

Конститутивный экзоцитоз

Регулируемый экзоцитоз

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой. При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , -

Способы транспорта веществ через мембрану.

Большинство процессов жизнедеятельности, таких, как всасывание, выделение, проведение нервного импульса, мышечное сокращение, синтез АТФ, поддержание постоянства ионного состава и содержания воды связано с переносом веществ через мембраны. Этот процесс в биологических системах получил название транспорта . Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия – проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже); этот процесс происходит без затрат энергии вследствие хаотического движения молекул. Диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры (каналы, через которые проходят растворенные молекулы и ионы), либо при участии липидной фазы (для жирорастворимых веществ). С помощью диффузии в клетку проникают растворенные молекулы кислорода и углекислого газа, а также яды и лекарственные препараты.

Виды транспорта через мембрану.1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Облегченная диффузия. Транспорт веществ через липидный бислой с помощью простой диффузии совершается с малой скоростью, особенно в случае заряженных частиц, и почти не контролируется. Поэтому в процессе эволюции для некоторых веществ появились специфические мембранные каналы и мембранные переносчики, которые способствуют повышению скорости переноса и, кроме того, осуществляют селективный транспорт.

Пассивный транспорт веществ с помощью переносчиков называется облегченной диффузией . Специальные белки-переносчики (пермеаза) встроены в мембрану. Пермеазы избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос – поступление в клетки воды из гипотонического раствора.

Фильтрация просачивание веществ поры в сторону меньших значений давления. Примером фильтрации в организме является перенос воды через стенки кровеносных сосудов, выдавливание плазмы крови в почечные канальцы.

Рис. Движение катионов по электрохимическому градиенту.

Активный транспорт. Если бы в клетках существовал только пассивный транспорт, то концентрации, давления и др. величины вне и внутри клетки сравнялись бы. Поэтому существует другой механизм, работающий в направлении против электрохимического градиента и происходящий с затратой энергии клеткой. Перенос молекул и ионов против электрохимического градиента, осуществляемый клеткой за счет энергии метаболических процессов, называется активным транспортом.Он присущ только биологическим мембранам. Активный перенос вещества через мембрану происходит за счет свободной энергии, высвобождающейся в ходе химических реакций внутри клетки. Активный транспорт в организме создает градиенты концентраций, электректрических потенциалов, давлений, т.е. поддерживает жизнь в организме.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот). Изучены 3 основные системы активного транспорта, которые обеспечивают перенос ионов Na, K, Ca, H через мембрану.

Механизм. Ионы К + и Na + неравномерно распределены по разные стороны мембраны: концентрация Na + снаружи > ионов K + , а внутри клетки K + > Na + . Эти ионы диффундируют через мембрану по направлению электрохимического градиента, что приводит к его выравниванию. Na-K насосы входят в состав цитоплазматических мембран и работают за счет энергии гидролиза молекул АТФ с образованием молекул АДФ и неорганического фосфата Ф н : АТФ=АДФ+Ф н. Насос работает обратимо: градиенты концентраций ионов способствуют синтезу молекул АТФ из мол-л АДФ и Ф н: АДФ+Ф н =АТФ.

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ».

Мембранный транспорт

За один цикл работы насос выводит из клетки три «Na + » и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Через мембрану могут переноситься не только отдельные молекулы, но и твердые тела (фагоцитоз ), растворы (пиноцитоз ). Фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны.

Если вещество транспортируется внутрь клетки, то такой вид транспорта называется эндоцитозом (перенос в клетку путем прямого пино-или фагоцитоза), если наружу, то – экзоцитозом (перенос из клетки путем обратного пино — или фагоцитоза). В первом случае на наружной стороне мембраны образуется впячивание, которое постепенно превращается в пузырек. Пузырек отрывается от мембраны внутри клетки. Такой пузырек содержит в себе транспортируемое вещество, окруженное билипидной оболочкой (везикулой). В дальнейшем везикула сливается с какой-нибудь клеточной органеллой и выпускает в неё своё содержимое. В случае экзоцитоза процесс происходит в обратной последовательности: везикула подходит к мембране с внутренней стороны клетки, сливается с ней и выбрасывает своё содержимое в межклеточное пространство.

Пиноцитоз и фагоцитоз – принципиально сходные процессы, в которых можно выделить четыре фазы: поступление веществ путем пино-или фагоцитоза, их расщепление под действием ферментов выделяемых лизосомами, перенос продуктов расщепления в цитоплазму (вследствие изменения проницаемости мембран вакуолей) и выделение наружу продуктов обмена. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Предыдущая12345678Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Транспорт веществ через плазматическую мембрану

Барьерно-транспортная функция поверхностного аппарата клетки обе­спечивается избирательным переносом ионов, молекул и надмолекулярных структур в клетку и из нее. Транспорт через мембраны обеспечивает доставку питательных веществ и удаление ко­нечных продуктов обмена из клетки, секрецию, создание ионных градиентов и трансмембранного потенциала, под­держание в клетке необходимых значе­ний pH и др.

Механизмы транспорта веществ в клетку и из нее зависят от химиче­ской природы переносимого вещества и его концентрации по обе стороны клеточной мембраны, а также от разме­ров транспортируемых частиц. Малые молекулы и ионы транспортируются через мембрану путем пассивного или активного транспорта. Пере­нос макромолекул и крупных частиц осуществляется посредством транспор­та в «мембранной упаковке», то есть за счет образования окруженных мембра­ной пузырьков.

Пассивным транспортом называет­ся перенос веществ через мембрану по градиенту их концентрации без затра­ты энергии. Такой транспорт осущест­вляется посредством двух основных механизмов: простой диффузии и об­легченной диффузии.

Путем простой диффузии транспор­тируются малые полярные и неполяр­ные молекулы, жирные кислоты и дру­гие низкомолекулярные гидрофобные органические вещества. Транспорт мо­лекул воды через мембрану, осущест­вляемый путем пассивной диффузии, получил название осмоса. Примером простой диффузии служит транспорт газов через плазматическую мембрану эндотелиальных клеток кровеносных капилляров в окружающую их ткане­вую жидкость и обратно.

Гидрофильные молекулы и ионы, не способные самостоятельно прохо­дить через мембрану, транспортируются с помощью специфических мембранных транспортных белков. Такой механизм транспорта получил назва­ние облегченной диффузии.

Существуют два основных клас­са мембранных транспортных белков: белки-переносчики и белки-каналы. Молекулы переносимого вещества, связы­ваясь с белком-переносчиком, вызыва­ют его конформационные изменения, результатом чего служит перенос ука­занных молекул через мембрану. Об­легченная диффузия отличается высо­кой избирательностью по отношению к транспортируемым веществам.

Белки-каналы формируют запол­ненные водой поры, пронизывающие липидный бислой. Когда эти поры от­крыты, неорганические ионы или мо­лекулы транспортируемых веществ проходят сквозь них и таким образом переносятся через мембрану. Ионные каналы обеспечивают перенос при­мерно 10 6 ионов в секунду, что более чем в 100 раз превышает скорость транспорта, осуществляемого белками-переносчиками.

Большинство белков-каналов име­ет «ворота», которые открываются на короткое время, а затем закрываются. В зависимости от природы канала «во­рота» могут открываться в ответ на свя­зывание сигнальных молекул (лиганд-зависимые воротные каналы), измене­ние мембранного потенциала (потенциал-зависимые воротные каналы) или механическую стимуляцию.

Активным транспортом называ­ется перенос веществ через мембрану против их градиентов концентрации. Он осуществляется с помощью белков-переносчиков и требует затрат энергии, основным источником которой служит АТФ.

Примером активного транспорта, использующего энергию гидролиза АТФ для перекачки ионов Na + и К + че­рез мембрану клетки, служит работа натриево-калиевого насоса , обеспечи­вающего создание мембранного по­тенциала на плазматической мембране клеток.

Насос образован встроенными в биологические мембраны специфи­ческими белками-ферментами аденозинтрифосфатазами, катализирующи­ми отщепление остатков фосфорной кислоты от молекулы АТФ. В состав АТФаз входят: ферментный центр, ионный канал и структурные элемен­ты, препятствующие обратной утечке ионов в процессе работы насоса. На работу натриево-калиевого насоса рас­ходуется более 1/3 АТФ, потребляемой клеткой.

В зависимости от способности транспортных белков переносить один или несколько видов молекул и ионов пассивный и активный транспорт под­разделяются на унипорт и копорт, или сопряженный транспорт.

Унипорт - это транспорт, при кото­ром белок-переносчик функционирует только в отношении молекул или ионов одного вида. При копорте, или сопря­женном транспорте, белок-переносчик способен транспортировать одновре­менно два или более видов молекул или ионов. Такие белки-переносчики получили название копортеров , или сопряженных переносчиков. Различают два вида копорта: симпорт и антипорт. В случае симпорта молекулы или ионы транспортируются в одном направле­нии, а при антипорте - в противопо­ложных направлениях. По принципу ан­типорта работает, например, натриево­калиевый насос, активно перекачивая ионы Na + из клеток, а ионы К + внутрь клеток против их электрохимических градиентов.

Примером симпорта слу­жит реабсорбция клетками почечных канальцев глюкозы и аминокислот из первичной мочи. В первичной моче концентрация Na + всегда значитель­но выше, чем в цитоплазме клеток по­чечных канальцев, что обеспечивается работой натриево-калиевого насоса. Связывание глюкозы первичной мочи с сопряженным белком-переносчиком открывает Nа + -канал, что сопровожда­ется переносом ионов Na + из первичной мочи внутрь клетки по градиенту их концентрации, то есть путем пассивного транспорта. Поток ионов Na + , в свою очередь, вызывает изменения конфор­мации белка-переносчика, результатом чего служит транспорт глюкозы в том же направлении, что и ионов Na + : из первичной мочи внутрь клетки. В данном случае для транспорта глюкозы, как можно убедиться, сопряженный переносчик использует энергию гра­диента ионов Na + , создаваемую рабо­той натриево-калиевого насоса. Таким образом, работа натриево-калиевого насоса и сопряженного переносчика, использующего для транспорта глюкозы градиент ионов Na + , позволяет реабсорбировать практически всю глюкозу из первичной мочи и включить ее в об­щий метаболизм организма.

Благодаря избирательному транс­порту заряженных ионов плазмалемма почти всех клеток несет на своей наруж­ной стороне положительный, а на вну­тренней цитоплазматической стороне - отрицательный заряды. В результате этого между обеими сторонами мембра­ны создается разность потенциалов.

Формирование трансмембранного потенциала достигается в основном за счет работы встроенных в плазмалемму транспортных систем: натриево­калиевого насоса и белков-каналов для ионов К + .

Как отмечалось выше, в процес­се работы натриево-калиевого насо­са на каждые два поглощенных клет­кой иона калия из нее выводится три иона натрия. В результате снаружи клеток создается избыток ионов Na + , а внутри - избыток ионов К + . Однако еще более значимый вклад в создание трансмембранного потенциала вносят калиевые каналы, которые в клетках, находящихся в состоянии покоя, всег­да открыты. Благодаря этому ионы К + выходят по градиенту концентрации из клетки во внеклеточную среду. В ре­зультате этого между двумя сторонами мембраны возникает разность потен­циалов от 20 до 100 мВ. Плазмалемма возбудимых клеток (нервных, мы­шечных, секреторных) наряду с К + — каналами содержит многочисленные Nа + -каналы, которые открываются на короткое время при действии на клетку химических, электрических или других сигналов.

Открытие Nа + -каналов вы­зывает изменение трансмембранного потенциала (деполяризацию мембра­ны) и специфический ответ клетки на действие сигнала.

Транспортные белки, которые ге­нерируют разность потенциалов на мембране, называются электрогенными насосами. Натриево-калиевый насос служит главной электрогенной помпой клеток.

Транспорт в мембранной упаковке характеризуется тем, что транспорти­руемые вещества на определенных ста­диях транспорта располагаются внутри мембранных пузырьков, то есть ока­зываются окруженными мембраной. В зависимости от того, в каком направ­лении переносятся вещества (в клетку или из нее), транспорт в мембранной упаковке подразделяется на эндоцитоз и экзоцитоз.

Эндоцитозом называется процесс поглощения клеткой макромолекул и более крупных частиц (вирусов, бак­терий, фрагментов клеток). Эндоцитоз осуществляется путем фагоцитоза и пиноцитоза.

Фагоцитоз - процесс активного за­хвата и поглощения клеткой твердых микрочастиц, размер которых состав­ляет более 1 мкм (бактерий, фрагмен­тов клеток и др.). В ходе фагоцитоза клетка с помощью специальных ре­цепторов распознает специфические молекулярные группировки фагоци­тируемой частицы.

Затем в месте кон­такта частицы с мембраной клетки образуются выросты плазмалеммы - псевдоподии, которые обволакивают микрочастицу со всех сторон. В резуль­тате слияния псевдоподий такая части­ца оказывается заключенной внутри пузырька, окруженного мембраной, который называется фагосомой. Обра­зование фагосом - энергозависимый процесс и протекает с участием актомиозиновой системы. Фагосома, погру­жаясь в цитоплазму, может сливаться с поздней эндосомой или лизосомой, в результате чего поглощенная клеткой органическая микрочастица, например бактериальная клетка, переваривает­ся. У человека к фагоци­тозу способны только немногие клетки: например, макрофаги соединительной ткани и лейкоциты крови. Эти клетки поглощают бактерии, а также разнооб­разные твердые частицы, попавшие в организм, и тем самым защищают его от болезнетворных микроорганизмов и посторонних частиц.

Пиноцитоз - поглощение клеткой жидкости в виде истинных и коллоид­ных растворов и суспензий. Этот про­цесс в общих чертах сходен с фагоцито­зом: капля жидкости погружается в об­разовавшееся углубление клеточной мембраны, окружается ею и оказывает­ся заключенной в пузырек диаметром 0,07-0,02 мкм, погруженный в гиало­плазму клетки.

Механизм пиноцитоза весьма сло­жен. Этот процесс осуществляется в специализированных областях по­верхностного аппарата клетки, назы­ваемых окаймленными ямками, ко­торые занимают около 2% клеточной поверхности. Окаймленные ямки пред­ставляют собой небольшие впячивания плазмалеммы, рядом с которыми в пе­риферической гиалоплазме находится большое количество белка клатрина. В области окаймленных ямок на по­верхности клеток располагаются также многочисленные рецепторы, способные специфически распознавать и связы­вать транспортируемые молекулы. При связывании рецепторами указанных молекул происходит полимеризация клатрина, и плазмалемма впячивается. В результате образуется окаймленный пузырек, несущий в себе транспортируе­мые молекулы. Свое название такие пу­зырьки получили благодаря тому, что клатрин на их поверхности под элек­тронным микроскопом выглядит как неровная каемка. После отделения от плазмалеммы окаймленные пузырьки теряют клатрин и приобретают способ­ность сливаться с другими пузырьками. Процессы полимеризации и деполи­меризации клатрина требуют затрат энергии и блокируются при недостатке АТФ.

Пиноцитоз, благодаря высокой кон­центрации рецепторов в окаймленных ямках, обеспечивает избирательность и эффективность транспорта специфи­ческих молекул. Например, концен­трация молекул транспортируемых ве­ществ в окаймленных ямках в 1000 раз превышает концентрацию их в окру­жающей среде. Пиноцитоз - основной способ транспорта в клетку белков, ли­пидов и гликопротеинов. Посредством пиноцитоза клетка поглощает за сутки количество жидкости, равное своему объему.

Экзоцитоз - процесс выведения веществ из клетки. Вещества, подлежа­щие выведению из клетки, сначала за­ключаются в транспортные пузырьки, наружная поверхность которых, как правило, покрыта белком клатрином, затем такие пузырьки направляются к клеточной мембране. Здесь мембрана пузырьков сливается с плазмалеммой, а содержимое их изливается за пределы клетки либо, сохраняя связь с плазма­леммой, включается в гликокаликс.

Существуют два типа экзоцитоза: кон­ститутивный (основной) и регулируемый.

Конститутивный экзоцитоз непре­рывно протекает во всех клетках орга­низма. Он служит основным механиз­мом выведения из клетки продуктов метаболизма и постоянного восстанов­ления клеточной мембраны.

Регулируемый экзоцитоз осущест­вляется лишь в специальных клетках, выполняющих секреторную функцию. Выделяемый секрет накапливается в секреторных пузырьках, а экзоцитоз происходит только после получения клеткой соответствующего химическо­го или электрического сигнала. Напри­мер, β-клетки островков Лангерганса пожелудочной железы выделяют свой секрет в кровь лишь при повышении в крови концентрации глюкозы.

В ходе экзоцитоза сформировавши­еся в цитоплазме секреторные пузырьки обычно направляются к специализиро­ванным участкам поверхностного аппарата, содержащим большое количество фузионных белков или белков слияния. При взаимодействии белков слияния плазмалеммы и секреторного пузырька образуется фузионная пора, соединяю­щая полость пузырька с внеклеточной средой.

При этом активируется актомиозиновая система, в результате чего со­держимое пузырька изливается из него за пределы клетки. Таким образом, при индуцируемом экзоцитозе энергия тре­буется не только для транспорта секре­торных пузырьков к плазмалемме, но и для процесса секреции.

Трансцитоз , или рекреция , - это транспорт, при котором происходит пе­ренос отдельных молекул через клетку. Указанный вид транспорта достигается за счет сочетания эндо- и экзоцитоза. Примером трансцитоза служит транс­порт веществ через клетки сосудистых стенок капилляров человека, который может осуществляться как в одном, так и в другом направлениях.

Иногда необходимо, чтобы внутри клетки концентрация вещества была высокой даже при низкой концентрации его во внеклеточной жидкости (например, для ионов калия). И наоборот, концентрацию других ионов внутри клетки важно сохранять на низком уровне, несмотря на их высокие концентрации вне клетки (например, для ионов натрия). Ни в одном из этих двух случаев это не может обеспечиваться простой диффузией, итогом которой всегда является уравновешивание концентрации ионов по обе стороны мембраны. Для создания избыточного движения ионов калия внутрь клетки, а ионов натрия - наружу необходим некий источник энергии. Процесс перемещения молекул или ионов через клеточную мембрану против градиента концентрации (или против электрического градиента, а также градиента давления) называют активным транспортом.

К веществам, активно транспортируемым , по крайней мере, через некоторые клеточные мембраны, относят ионы натрия, калия, кальция, железа, водорода, хлора, йода, мочевой кислоты, некоторые сахара и большинство аминокислот.

Первично активный и вторично активный транспорт . В зависимости от источника используемой энергии активный транспорт подразделяется на два типа: первично активный и вторично активный. Для первично активного транспорта энергия извлекается непосредственно при расщеплении аденозинтрифосфата или некоторых других высокоэнергетических фосфатных соединений. Вторично активный транспорт обеспечивается вторичной энергией, накопленной в форме разности концентраций побочных веществ, молекул или ионов, по обе стороны клеточной мембраны, созданной первоначально первично активным транспортом. В обоих случаях, как и при облегченной диффузии, транспорт зависит от белков-переносчиков, пронизывающих клеточную мембрану. Однако функции белков-переносчиков при активном транспорте отличаются от переноса облегченной диффузией, поскольку в первом случае белки способны передавать энергию транспортируемому веществу для его перемещения против электрохимического градиента. Далее приведены примеры первично активного и вторично активного транспорта с более детальными объяснениями принципов их функционирования.

Натрий-калиевый насос

К веществам , которые транспортируются посредством первично активного транспорта, относят натрий, калий, кальций, водород, хлор и некоторые другие ионы.
Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na+/K+-нaсоса) - транспортного процесса, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток. (В главе 5 будет показано, что он является также основой процесса передачи импульсов в нервной системе.)

Белок-переносчик представлен комплексом из двух раздельных глобулярных белков: более крупного, называемого альфа-субъединицей, с молекулярной массой около 100000, и меньшего, называемого бета-субъединицей, с молекулярной массой около 55000. Хотя функция меньшего белка неизвестна (за исключением того, что он, возможно, закрепляет белковый комплекс в липидной мембране), крупный белок имеет три специфических характеристики, важные для функционирования насоса.

1. На выступающей внутрь клетки части белка имеются три рецепторных участка для связывания ионов натрия.
2. На наружной части белка располагаются два рецепторных участка для связывания ионов калия.
3. Внутренняя часть белка, расположенная вблизи участков связывания ионов натрия, обладает АТФ-азной активностью.

Рассмотрим работу насоса . Когда 2 иона калия связываются с белком-переносчиком снаружи и 3 иона натрия связываются с ним внутри, активируется АТФ-азная функция белка. Это ведет к расщеплению 1 молекулы АТФ до АДФ с выделением энергии высокоэнергетической фосфатной связи. Полагают, что эта освобожденная энергия вызывает химическое и конформационное изменение молекулы белка-переносчика, в результате 3 иона натрия перемещаются наружу, а 2 иона калия - внутрь клетки.

Как и другие ферменты, Na-K+-ATФ-aзa может работать и в обратном направлении. При экспериментальном увеличении электрохимических градиентов для Na+ и К+ до таких значений, что накопленная в них энергия станет выше химической энергии гидролиза АТФ, эти ионы будут двигаться по своим градиентам концентрации, а Na+/K+-Hacoc будет синтезировать АТФ из АДФ и фосфата. Следовательно, фосфорилированная форма Nа+/К+-насоса может быть или донором фосфатов для синтеза АТФ из АДФ, или использовать энергию для изменения своей конформации и качать натрий из клетки, а калий - в клетку. Относительные концентрации АТФ, АДФ и фосфатов, как и электрохимические градиенты для натрия и калия, определяют направление ферментативной реакции. Для некоторых клеток, например электрически активных нервных клеток, от 60 до 70% всей потребляемой клеткой энергии тратится на перемещение натрия наружу и калия внутрь.

Транспорт веществ внутрь и наружу клетки, а также между цитоплазмой и различными субклеточными органеллами (митохондриями, ядром и т.д.) обеспечивается мембранами. Если бы мембраны были глухим барьером, то внутриклеточное пространство оказалось бы недоступным для питательных веществ, а продукты жизнедеятельности не могли бы быть удалены из клетки. В то же время при полной проницаемости было бы невозможно накопление определенных веществ в клетке. Транспортные свойства мембраны характеризуются полупроницаемостью : некоторые соединения могут проникать через нее, а другие - нет:

Проницаемость мембран для различных веществ

Одна из главных функций мембран - регуляция переноса веществ. Существуют два способа переноса веществ через мембрану: пассивный и активный транспорт:

Транспорт веществ через мембраны

Пассивный транспорт . Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией . Различают два типа диффузии: простую и облегченную .

Простая диффузия характерна для небольших нейтральных молекул (H 2 O, CO 2 , O 2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия . Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа ) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТР. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na + и K + через клеточную мембрану. Эта система называется Na + - K + - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К + выше, чем Na + :

Механизм действия Na + , K + -АТР-азы

Градиент концентрации калия и натрия поддерживается путем переноса К + внутрь клетки, а Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + ,K + -насос представляет собой белок - транспортную АТР-азу . Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится три иона Na + , а в обратном направлении - два иона К + . При этом используется энергия молекулы АТР. Существуют транспортные системы для переноса ионов кальция (Са 2+ - АТР-азы), протонные насосы (Н + - АТР-азы) и др. Симпорт это активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества. Транспортная АТР-аза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи. При этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТР-азой.

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.

Публикации по теме