Cum să găsiți a unei progresii aritmetice. Progresii aritmetice și geometrice

Sau aritmetică - acesta este un tip de ordonat succesiune de numere, ale căror proprietăți sunt studiate într-un curs de algebră școlară. Acest articol discută în detaliu întrebarea cum să găsiți suma progresie aritmetică.

Ce fel de progres este aceasta?

Înainte de a trece la întrebarea (cum să găsiți suma unei progresii aritmetice), merită să înțelegeți despre ce vorbim.

Orice succesiune de numere reale care se obține prin adăugarea (scăderea) unei valori din fiecare număr anterior se numește progresie algebrică (aritmetică). Această definiție, atunci când este tradusă în limbaj matematic, ia forma:

Aici eu - număr de serie element al seriei a i . Astfel, cunoscând un singur număr de început, puteți restabili cu ușurință întreaga serie. Parametrul d din formulă se numește diferență de progresie.

Se poate demonstra cu ușurință că pentru seria de numere luate în considerare este valabilă următoarea egalitate:

a n = a 1 + d * (n - 1).

Adică, pentru a găsi valoarea celui de-al n-lea element în ordine, ar trebui să adăugați diferența d la primul element a de 1 n-1 ori.

Care este suma unei progresii aritmetice: formula

Înainte de a da formula pentru suma indicată, merită să luați în considerare un simplu caz special. Se da progresul numere naturale de la 1 la 10, trebuie să găsiți suma lor. Deoarece există puțini termeni în progresia (10), este posibil să se rezolve problema direct, adică să însumăm toate elementele în ordine.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Un lucru care merită luat în considerare lucru interesant: deoarece fiecare termen diferă de următorul prin aceeași valoare d = 1, atunci însumarea în perechi a primului cu al zecelea, a al doilea cu al nouălea și așa mai departe va da același rezultat. Serios:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

După cum puteți vedea, există doar 5 dintre aceste sume, adică exact de două ori mai puțin decât numărul de elemente ale seriei. Apoi înmulțind numărul de sume (5) cu rezultatul fiecărei sume (11), veți ajunge la rezultatul obținut în primul exemplu.

Dacă generalizăm aceste argumente, putem scrie următoarea expresie:

S n = n * (a 1 + a n) / 2.

Această expresie arată că nu este deloc necesară însumarea tuturor elementelor pe rând este suficient să cunoaștem valoarea primului a 1 și a ultimului a n , precum și număr total n termeni.

Se crede că Gauss a fost primul care s-a gândit la această egalitate atunci când a căutat o soluție la o anumită problemă. profesor de școală sarcină: însumați primele 100 de numere întregi.

Suma elementelor de la m la n: formula

Formula dată în paragraful anterior răspunde la întrebarea cum se găsește suma unei progresii aritmetice (primele elemente), dar adesea în probleme este necesară însumarea unei serii de numere la mijlocul progresiei. Cum să faci asta?

Cel mai simplu mod de a răspunde la această întrebare este luând în considerare următorul exemplu: să fie necesar să se găsească suma termenilor de la m-a la n-a. Pentru a rezolva problema, ar trebui să reprezentați segmentul dat de la m la n al progresiei ca un nou serie de numere. In aceasta m-a reprezentare termenul a m va fi primul, iar un n va fi numerotat n-(m-1). În acest caz, aplicând formula standard pentru sumă, se va obține următoarea expresie:

S m n = (n - m + 1) * (a m + a n) / 2.

Exemplu de utilizare a formulelor

Știind cum să găsiți suma unei progresii aritmetice, merită să luați în considerare un exemplu simplu de utilizare a formulelor de mai sus.

Mai jos este o secvență numerică, ar trebui să găsiți suma termenilor săi, începând cu a 5-a și terminând cu a 12-lea:

Numerele date indică faptul că diferența d este egală cu 3. Folosind expresia pentru al n-lea element, puteți găsi valorile termenilor al 5-lea și al 12-lea al progresiei. Se dovedește:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Cunoscând valorile numerelor de la capetele progresiei algebrice luate în considerare, precum și știind ce numere din seria ocupă acestea, puteți folosi formula pentru suma obținută în paragraful anterior. Se va dovedi:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Este de remarcat faptul că această valoare ar putea fi obținută diferit: mai întâi găsiți suma primelor 12 elemente folosind formula standard, apoi calculați suma primelor 4 elemente folosind aceeași formulă, apoi scădeți pe al doilea din prima sumă.


Da, da: progresia aritmetică nu este o jucărie pentru tine :)

Ei bine, prieteni, dacă citiți acest text, atunci dovada internă a capacului îmi spune că încă nu știți ce este o progresie aritmetică, dar chiar (nu, așa: SOOOOO!) doriți să știți. Prin urmare, nu vă voi chinui cu prezentări lungi și voi ajunge direct la obiect.

În primul rând, câteva exemple. Să ne uităm la mai multe seturi de numere:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ce au în comun toate aceste seturi? La prima vedere, nimic. Dar de fapt există ceva. Anume: fiecare element următor diferă de cel precedent prin același număr.

Judecă singur. Primul set este pur și simplu numere consecutive, fiecare următor fiind cu unul mai mult decât precedentul. În al doilea caz, diferența dintre numerele adiacente este deja de cinci, dar această diferență este încă constantă. În al treilea caz, există cu totul rădăcini. Cu toate acestea, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ și $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, adică. și în acest caz, fiecare element următor crește pur și simplu cu $\sqrt(2)$ (și nu vă fie teamă că acest număr este irațional).

Deci: toate astfel de secvențe se numesc progresii aritmetice. Să dăm o definiție strictă:

Definiţie. O succesiune de numere în care fiecare următor diferă de precedentul prin exact aceeași cantitate se numește progresie aritmetică. Însuși valoarea cu care numerele diferă se numește diferență de progresie și este cel mai adesea notă cu litera $d$.

Notație: $\left(((a)_(n)) \right)$ este progresia în sine, $d$ este diferența acesteia.

Și doar câteva note importante. În primul rând, progresia este luată în considerare ordonat succesiune de numere: au voie să fie citite strict în ordinea în care sunt scrise - și nimic altceva. Numerele nu pot fi rearanjate sau schimbate.

În al doilea rând, succesiunea în sine poate fi fie finită, fie infinită. De exemplu, mulțimea (1; 2; 3) este în mod evident o progresie aritmetică finită. Dar dacă scrieți ceva în spirit (1; 2; 3; 4; ...) - aceasta este deja o progresie infinită. Elipsele de după cele patru par să sugereze că mai urmează destul de multe numere. Infinit multe, de exemplu.

De asemenea, aș dori să remarc că progresiile pot fi în creștere sau în scădere. Am văzut deja crescătoare - același set (1; 2; 3; 4; ...). Iată exemple de progresii în scădere:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Bine, bine: ultimul exemplu poate părea excesiv de complicat. Dar restul cred că ai înțeles. Prin urmare, introducem noi definiții:

Definiţie. O progresie aritmetica se numeste:

  1. crescând dacă fiecare element următor este mai mare decât cel anterior;
  2. descrescătoare dacă, dimpotrivă, fiecare element ulterior este mai mic decât cel anterior.

În plus, există așa-numitele secvențe „staționare” - ele constau din același număr care se repetă. De exemplu, (3; 3; 3; ...).

Rămâne o singură întrebare: cum să distingem o progresie crescătoare de una în scădere? Din fericire, totul aici depinde doar de semnul numărului $d$, adică. diferente de progresie:

  1. Dacă $d \gt 0$, atunci progresia crește;
  2. Dacă $d \lt 0$, atunci progresia este în mod evident în scădere;
  3. În sfârșit, există cazul $d=0$ - în acest caz întreaga progresie se reduce la o succesiune staționară de numere identice: (1; 1; 1; 1; ...), etc.

Să încercăm să calculăm diferența $d$ pentru cele trei progresii descrescătoare prezentate mai sus. Pentru a face acest lucru, este suficient să luați oricare două elemente adiacente (de exemplu, primul și al doilea) și să scădeți numărul din stânga din numărul din dreapta. Va arăta astfel:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

După cum putem vedea, în toate cele trei cazuri diferența sa dovedit a fi de fapt negativă. Și acum că ne-am dat seama mai mult sau mai puțin definițiile, este timpul să ne dăm seama cum sunt descrise progresiile și ce proprietăți au acestea.

Termeni de progresie și formula de recurență

Deoarece elementele secvențelor noastre nu pot fi schimbate, ele pot fi numerotate:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \dreapta\)\]

Elementele individuale ale acestui set sunt numite membri ai unei progresii. Ele sunt indicate printr-un număr: primul membru, al doilea membru etc.

În plus, după cum știm deja, termenii învecinați ai progresiei sunt legați prin formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Pe scurt, pentru a găsi termenul $n$ al unei progresii, trebuie să cunoașteți termenul $n-1$-lea și diferența $d$. Această formulă se numește recurentă, deoarece cu ajutorul ei poți găsi orice număr doar cunoscându-l pe cel anterior (și de fapt, pe toate precedentele). Acest lucru este foarte incomod, deci există o formulă mai vicleană care reduce orice calcul la primul termen și diferența:

\[((a)_(n))=((a)_(1))+\stanga(n-1 \dreapta)d\]

Probabil că ați întâlnit deja această formulă. Le place să o ofere în tot felul de cărți de referință și cărți cu probleme. Și în orice manual de matematică sensibil este unul dintre primele.

Totuși, vă sugerez să exersați puțin.

Sarcina nr. 1. Notați primii trei termeni ai progresiei aritmetice $\left(((a)_(n)) \right)$ dacă $((a)_(1))=8,d=-5$.

Soluţie. Deci, cunoaștem primul termen $((a)_(1))=8$ și diferența de progresie $d=-5$. Să folosim formula tocmai dată și să înlocuim $n=1$, $n=2$ și $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Răspuns: (8; 3; −2)

Asta este! Vă rugăm să rețineți: progresul nostru este în scădere.

Desigur, $n=1$ nu a putut fi înlocuit - primul termen este deja cunoscut de noi. Totuși, înlocuind unitatea, am fost convinși că și pentru primul termen formula noastră funcționează. În alte cazuri, totul s-a rezumat la aritmetică banală.

Sarcina nr. 2. Scrieți primii trei termeni ai unei progresii aritmetice dacă al șaptelea termen este egal cu −40 și al șaptesprezecelea termen este egal cu −50.

Soluţie. Să scriem condiția problemei în termeni familiari:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \corect.\]

Am pus semnul de sistem pentru că aceste cerințe trebuie îndeplinite simultan. Acum să observăm că, dacă o scădem pe prima din a doua ecuație (avem dreptul să facem asta, deoarece avem un sistem), obținem asta:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Așa este de ușor să găsești diferența de progresie! Rămâne să înlocuiți numărul găsit în oricare dintre ecuațiile sistemului. De exemplu, în primul:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrice)\]

Acum, cunoscând primul termen și diferența, rămâne să găsim al doilea și al treilea termen:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gata! Problema este rezolvată.

Răspuns: (−34; −35; −36)

Observați proprietatea interesantă a progresiei pe care am descoperit-o: dacă luăm termenii $n$th și $m$th și îi scădem unul de celălalt, obținem diferența de progresie înmulțită cu numărul $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simplu dar foarte proprietate utilă, pe care trebuie neapărat să-l cunoașteți - cu ajutorul lui puteți accelera semnificativ rezolvarea multor probleme de progresie. Aici strălucitor că exemplu:

Sarcina nr. 3. Al cincilea termen al unei progresii aritmetice este 8,4, iar al zecelea termen este 14,4. Găsiți al cincisprezecelea termen al acestei progresii.

Soluţie. Deoarece $((a)_(5))=8,4$, $((a)_(10))=14,4$ și trebuie să găsim $((a)_(15))$, observăm următoarele:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Dar prin condiția $((a)_(10))-((a)_(5))=14.4-8.4=6$, deci $5d=6$, din care avem:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Răspuns: 20.4

Asta este! Nu a fost nevoie să creăm sisteme de ecuații și să calculăm primul termen și diferența - totul a fost rezolvat în doar câteva linii.

Acum să ne uităm la un alt tip de problemă - căutarea termenilor negativi și pozitivi ai unei progresii. Nu este un secret că, dacă o progresie crește, iar primul său termen este negativ, atunci mai devreme sau mai târziu vor apărea termeni pozitivi în ea. Și invers: termenii unei progresii descrescătoare vor deveni mai devreme sau mai târziu negativi.

În același timp, nu este întotdeauna posibil să găsiți acest moment „în față” parcurgând secvențial elementele. Adesea, problemele sunt scrise în așa fel încât, fără a cunoaște formulele, calculele ar dura mai multe coli de hârtie – pur și simplu am adormi în timp ce găsim răspunsul. Prin urmare, să încercăm să rezolvăm aceste probleme într-un mod mai rapid.

Sarcina nr. 4. Câți termeni negativi există în progresia aritmetică −38,5; −35,8; ...?

Soluţie. Deci, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, de unde găsim imediat diferența:

Rețineți că diferența este pozitivă, deci progresia crește. Primul termen este negativ, așa că într-adevăr, la un moment dat, ne vom împiedica de numere pozitive. Singura întrebare este când se va întâmpla asta.

Să încercăm să aflăm cât timp (adică până la ce număr natural $n$) rămâne negativitatea termenilor:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \dreapta. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ultima linie necesită câteva explicații. Deci știm că $n \lt 15\frac(7)(27)$. Pe de altă parte, ne mulțumim doar cu valori întregi ale numărului (mai mult: $n\in \mathbb(N)$), deci cel mai mare număr permis este tocmai $n=15$ și în niciun caz 16 .

Sarcina nr. 5. În progresie aritmetică $(()_(5))=-150,(()_(6))=-147$. Aflați numărul primului termen pozitiv al acestei progresii.

Aceasta ar fi exact aceeași problemă ca cea anterioară, dar nu știm $((a)_(1))$. Dar termenii vecini sunt cunoscuți: $((a)_(5))$ și $((a)_(6))$, așa că putem găsi cu ușurință diferența de progresie:

În plus, să încercăm să exprimăm al cincilea termen prin primul și diferența folosind formula standard:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Acum procedăm prin analogie cu sarcina anterioară. Să aflăm în ce moment în succesiunea noastră vor apărea numerele pozitive:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Soluția întreagă minimă a acestei inegalități este numărul 56.

Vă rugăm să rețineți: în ultima sarcină totul s-a rezumat la o inegalitate strictă, așa că opțiunea $n=55$ nu ne va potrivi.

Acum că am învățat cum să rezolvăm probleme simple, să trecem la altele mai complexe. Dar mai întâi, să studiem o altă proprietate foarte utilă a progresiilor aritmetice, care ne va economisi mult timp și celule inegale în viitor :)

Media aritmetică și indentări egale

Să luăm în considerare câțiva termeni consecutivi ai progresiei aritmetice crescătoare $\left(((a)_(n)) \right)$. Să încercăm să le marchem pe linia numerică:

Termenii unei progresii aritmetice pe dreapta numerică

Am marcat în mod special termeni arbitrari $((a)_(n-3)),...,((a)_(n+3))$, și nu niște $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Pentru că regula despre care vă voi spune acum funcționează la fel pentru orice „segment”.

Și regula este foarte simplă. Să ne amintim formula recurentă și să o scriem pentru toți termenii marcați:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Cu toate acestea, aceste egalități pot fi rescrise diferit:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Şi ce dacă? Și faptul că termenii $((a)_(n-1))$ și $((a)_(n+1))$ se află la aceeași distanță de $((a)_(n)) $ . Și această distanță este egală cu $d$. Același lucru se poate spune despre termenii $((a)_(n-2))$ și $((a)_(n+2))$ - sunt, de asemenea, eliminați din $((a)_(n) )$ la aceeași distanță egală cu $2d$. Putem continua la infinit, dar sensul este bine ilustrat de imagine


Termenii progresiei se află la aceeași distanță de centru

Ce înseamnă asta pentru noi? Aceasta înseamnă că $((a)_(n))$ poate fi găsit dacă numerele învecinate sunt cunoscute:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Am obținut o afirmație excelentă: fiecare termen al unei progresii aritmetice este egal cu media aritmetică a termenilor învecinați! Mai mult decât atât: ne putem întoarce de la $((a)_(n))$ la stânga și la dreapta nu cu un pas, ci cu $k$ pași - și formula va fi în continuare corectă:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Aceste. putem găsi cu ușurință câțiva $((a)_(150))$ dacă știm $((a)_(100))$ și $((a)_(200))$, deoarece $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. La prima vedere, poate părea că acest fapt nu ne oferă nimic util. Cu toate acestea, în practică, multe probleme sunt special adaptate pentru a utiliza media aritmetică. Aruncă o privire:

Sarcina nr. 6. Găsiți toate valorile lui $x$ pentru care numerele $-6((x)^(2))$, $x+1$ și $14+4((x)^(2))$ sunt termeni consecutivi ai o progresie aritmetică (în ordinea indicată).

Soluţie. Deoarece aceste numere sunt membre ale unei progresii, condiția mediei aritmetice este îndeplinită pentru ele: elementul central $x+1$ poate fi exprimat în termeni de elemente învecinate:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

A ieșit clasic ecuație pătratică. Rădăcinile sale: $x=2$ și $x=-3$ sunt răspunsurile.

Răspuns: −3; 2.

Sarcina nr. 7. Găsiți valorile lui $$ pentru care numerele $-1;4-3;(()^(2))+1$ formează o progresie aritmetică (în această ordine).

Soluţie. Să exprimăm din nou termenul mijlociu prin media aritmetică a termenilor vecini:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Din nou ecuația cuadratică. Și din nou există două rădăcini: $x=6$ și $x=1$.

Răspuns: 1; 6.

Dacă în procesul de rezolvare a unei probleme vii cu niște numere brutale, sau nu ești complet sigur de corectitudinea răspunsurilor găsite, atunci există o tehnică minunată care îți permite să verifici: am rezolvat corect problema?

Să presupunem că în problema nr. 6 am primit răspunsurile −3 și 2. Cum putem verifica dacă aceste răspunsuri sunt corecte? Să le conectăm la starea originală și să vedem ce se întâmplă. Permiteți-mi să vă reamintesc că avem trei numere ($-6(()^(2))$, $+1$ și $14+4(()^(2))$), care trebuie să formeze o progresie aritmetică. Să înlocuim $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Am obținut numerele −54; −2; 50 care diferă cu 52 este, fără îndoială, o progresie aritmetică. Același lucru se întâmplă și pentru $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Din nou o progresie, dar cu o diferență de 27. Astfel, problema a fost rezolvată corect. Cei care doresc pot verifica singuri a doua problemă, dar voi spune imediat: totul este corect și acolo.

În general, rezolvând ultimele probleme, am dat peste alta fapt interesant, care trebuie reținut și:

Dacă trei numere sunt astfel încât al doilea este media aritmetică a primului și ultimului, atunci aceste numere formează o progresie aritmetică.

În viitor, înțelegerea acestei afirmații ne va permite să „construim” literalmente progresiile necesare pe baza condițiilor problemei. Dar înainte de a ne angaja într-o astfel de „construcție”, ar trebui să fim atenți la încă un fapt, care decurge direct din ceea ce a fost deja discutat.

Gruparea și însumarea elementelor

Să revenim din nou la axa numerelor. Să notăm acolo câțiva membri ai progresiei, între care, poate. valorează mulți alți membri:

Pe linia numerică sunt marcate 6 elemente

Să încercăm să exprimăm „coada din stânga” prin $((a)_(n))$ și $d$, iar „coada din dreapta” prin $((a)_(k))$ și $d$. Este foarte simplu:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Acum rețineți că următoarele sume sunt egale:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mai simplu spus, dacă considerăm ca început două elemente ale progresiei, care în total sunt egale cu un anumit număr $S$, și apoi începem să pășim din aceste elemente în direcții opuse (unul către celălalt sau invers pentru a se îndepărta), apoi sumele elementelor de care ne vom împiedica vor fi de asemenea egale$S$. Acest lucru poate fi cel mai clar reprezentat grafic:


Indentațiile egale dau cantități egale

Înțelegerea acestui fapt ne va permite să rezolvăm problemele într-un mod fundamental mai mult nivel înalt dificultăți decât cele pe care le-am considerat mai sus. De exemplu, acestea:

Sarcina nr. 8. Determinați diferența unei progresii aritmetice în care primul termen este 66, iar produsul dintre al doilea și al doisprezecelea termeni este cel mai mic posibil.

Soluţie. Să scriem tot ce știm:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Deci, nu cunoaștem diferența de progresie $d$. De fapt, întreaga soluție va fi construită în jurul diferenței, deoarece produsul $((a)_(2))\cdot ((a)_(12))$ poate fi rescris după cum urmează:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Pentru cei din rezervor: am luat multiplicatorul total de 11 din a doua paranteză. Astfel, produsul necesar este o funcție pătratică față de variabila $d$. Prin urmare, luați în considerare funcția $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - graficul său va fi o parabolă cu ramuri în sus, deoarece dacă extindem parantezele, obținem:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

După cum puteți vedea, coeficientul celui mai înalt termen este 11 - acesta este număr pozitiv, deci avem de-a face cu o parabolă cu ramuri în sus:


programa funcţie pătratică- parabola

Vă rugăm să rețineți: această parabolă își ia valoarea minimă la vârful său cu abscisa $((d)_(0))$. Desigur, putem calcula această abscisă folosind schema standard (există formula $((d)_(0))=(-b)/(2a)\;$), dar ar fi mult mai rezonabil să remarcăm că vârful dorit se află pe axa de simetrie a parabolei, prin urmare punctul $((d)_(0))$ este echidistant de rădăcinile ecuației $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

De aceea, nu m-am grăbit să deschid parantezele: în forma lor originală, rădăcinile erau foarte, foarte ușor de găsit. Prin urmare, abscisa este egală cu media numere aritmetice−66 și −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ce ne oferă numărul descoperit? Cu ea, produsul necesar ia cea mai mică valoare(apropo, nu am calculat niciodată $((y)_(\min ))$ - nu ni se cere acest lucru). În același timp, acest număr este diferența progresiei inițiale, adică. am gasit raspunsul :)

Răspuns: −36

Sarcina nr. 9. Între numerele $-\frac(1)(2)$ și $-\frac(1)(6)$ introduceți trei numere astfel încât împreună cu aceste numere să formeze o progresie aritmetică.

Soluţie. În esență, trebuie să facem o secvență de cinci numere, cu primul și ultimul număr deja cunoscute. Să notăm numerele lipsă prin variabilele $x$, $y$ și $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Rețineți că numărul $y$ este „mijlocul” secvenței noastre - este echidistant de numerele $x$ și $z$ și de numerele $-\frac(1)(2)$ și $-\frac (1)( 6)$. Și dacă în prezent nu putem obține $y$ din numerele $x$ și $z$, atunci situația este diferită cu capetele progresiei. Să ne amintim media aritmetică:

Acum, cunoscând $y$, vom găsi numerele rămase. Rețineți că $x$ se află între numerele $-\frac(1)(2)$ și $y=-\frac(1)(3)$ pe care tocmai le-am găsit. De aceea

Folosind un raționament similar, găsim numărul rămas:

Gata! Am găsit toate cele trei numere. Să le scriem în răspuns în ordinea în care ar trebui să fie introduse între numerele originale.

Răspuns: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Sarcina nr. 10. Între numerele 2 și 42, introduceți mai multe numere care, împreună cu aceste numere, formează o progresie aritmetică, dacă știți că suma primului, al doilea și ultimul dintre numerele introduse este 56.

Soluţie. O problemă și mai complexă, care, însă, se rezolvă după aceeași schemă ca și cele precedente - prin media aritmetică. Problema este că nu știm exact câte numere trebuie introduse. Prin urmare, să presupunem pentru certitudine că după ce ați inserat totul vor fi exact $n$ numere, iar primul dintre ele este 2, iar ultimul este 42. În acest caz, progresia aritmetică necesară poate fi reprezentată sub forma:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \dreapta\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Rețineți, totuși, că numerele $((a)_(2))$ și $((a)_(n-1))$ sunt obținute din numerele 2 și 42 de la margini cu un pas unul spre celălalt, adică . spre centrul secvenței. Și asta înseamnă că

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Dar atunci expresia scrisă mai sus poate fi rescrisă după cum urmează:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Cunoscând $((a)_(3))$ și $((a)_(1))$, putem găsi cu ușurință diferența progresiei:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Săgeată la dreapta d=5. \\ \end(align)\]

Tot ce rămâne este să găsiți termenii rămași:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Astfel, deja la pasul 9 vom ajunge la capătul din stânga secvenței – numărul 42. În total, au trebuit introduse doar 7 numere: 7; 12; 17; 22; 27; 32; 37.

Răspuns: 7; 12; 17; 22; 27; 32; 37

Probleme de cuvinte cu progresii

În concluzie, aș dori să iau în considerare câteva relativ sarcini simple. Ei bine, la fel de simplu: pentru majoritatea elevilor care studiază matematica la școală și nu au citit ce este scris mai sus, aceste probleme pot părea grele. Cu toate acestea, acestea sunt tipurile de probleme care apar în OGE și examenul de stat unificat la matematică, așa că vă recomand să vă familiarizați cu ele.

Sarcina nr. 11. Echipa a produs 62 de piese în ianuarie și în fiecare luna viitoare a produs cu 14 piese mai multe decât precedentul. Câte piese a produs echipa în noiembrie?

Soluţie. Evident, numărul de piese enumerate pe lună va reprezenta o progresie aritmetică din ce în ce mai mare. În plus:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Noiembrie este a 11-a lună a anului, așa că trebuie să găsim $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Prin urmare, în noiembrie vor fi produse 202 piese.

Sarcina nr. 12. Atelierul de legătorie a legat 216 cărți în ianuarie, iar în fiecare lună următoare a legat cu 4 cărți mai multe decât în ​​luna precedentă. Câte cărți a legat atelierul în decembrie?

Soluţie. Totul este la fel:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Decembrie este ultima, a 12-a lună a anului, așa că căutăm $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Acesta este răspunsul - 260 de cărți vor fi legate în decembrie.

Ei bine, dacă ați citit până aici, mă grăbesc să vă felicit: ați finalizat cu succes „cursul tânărului luptător” în progresii aritmetice. Puteți trece în siguranță la următoarea lecție, unde vom studia formula pentru suma progresiei, precum și consecințele importante și foarte utile din aceasta.

Aritmetică și progresie geometrică

Informații teoretice

Informații teoretice

Progresie aritmetică

Progresie geometrică

Definiţie

Progresie aritmetică un n este o succesiune în care fiecare membru, începând cu al doilea, este egal cu membrul anterior adăugat la același număr d (d- diferenta de progresie)

Progresie geometrică b n este o succesiune de numere diferite de zero, fiecare termen al cărora, începând cu al doilea, este egal cu termenul anterior înmulțit cu același număr q (q- numitorul progresiei)

Formula recurentei

Pentru orice natural n
a n + 1 = a n + d

Pentru orice natural n
b n + 1 = b n ∙ q, b n ≠ 0

Formula al n-lea termen

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Proprietate caracteristică
Suma primilor n termeni

Exemple de sarcini cu comentarii

Sarcina 1

În progresie aritmetică ( un n) a 1 = -6, a 2

Conform formulei celui de-al n-lea termen:

un 22 = a 1+ d (22 - 1) = a 1+ 21 d

Dupa conditie:

a 1= -6, atunci un 22= -6 + 21 d .

Este necesar să găsiți diferența de progresii:

d = a 2 – a 1 = -8 – (-6) = -2

un 22 = -6 + 21 ∙ (-2) = - 48.

Raspuns: un 22 = -48.

Sarcina 2

Aflați al cincilea termen al progresiei geometrice: -3; 6;....

Prima metodă (folosind formula n termeni)

Conform formulei pentru al n-lea termen al unei progresii geometrice:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

Deoarece b 1 = -3,

A doua metodă (folosind formula recurentă)

Deoarece numitorul progresiei este -2 (q = -2), atunci:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Raspuns: b 5 = -48.

Sarcina 3

În progresie aritmetică ( a n ) a 74 = 34; un 76= 156. Găsiți al șaptezeci și cincilea termen al acestei progresii.

Pentru o progresie aritmetică, proprietatea caracteristică are forma .

Din aceasta rezultă:

.

Să înlocuim datele în formula:

Raspuns: 95.

Sarcina 4

În progresie aritmetică ( a n ) a n= 3n - 4. Aflați suma primilor șaptesprezece termeni.

Pentru a afla suma primilor n termeni ai unei progresii aritmetice, se folosesc două formule:

.

În care se află în acest caz, mai comod de folosit?

Prin condiție, formula pentru al n-lea termen al progresiei inițiale este cunoscută ( un n) un n= 3n - 4. Puteți găsi imediat și a 1, Și un 16 fără a găsi d. Prin urmare, vom folosi prima formulă.

Raspuns: 368.

Sarcina 5

În progresie aritmetică ( un n) a 1 = -6; a 2= -8. Găsiți termenul al douăzeci și doi al progresiei.

Conform formulei celui de-al n-lea termen:

a 22 = a 1 + d (22 – 1) = a 1+ 21d.

După condiție, dacă a 1= -6, atunci un 22= -6 + 21d . Este necesar să găsiți diferența de progresii:

d = a 2 – a 1 = -8 – (-6) = -2

un 22 = -6 + 21 ∙ (-2) = -48.

Raspuns: un 22 = -48.

Sarcina 6

Se scriu mai mulți termeni consecutivi ai progresiei geometrice:

Găsiți termenul progresiei etichetat x.

Când rezolvăm, vom folosi formula pentru al n-lea termen b n = b 1 ∙ q n - 1 pentru progresii geometrice. Primul termen al progresiei. Pentru a găsi numitorul progresiei q, trebuie să luați oricare dintre termenii dați ai progresiei și să împărțiți la cel anterior. În exemplul nostru, putem lua și împărți prin. Obținem că q = 3. În loc de n, înlocuim 3 în formulă, deoarece este necesar să găsim al treilea termen al unei progresii geometrice date.

Înlocuind valorile găsite în formulă, obținem:

.

Raspuns: .

Sarcina 7

Din progresiile aritmetice date de formula celui de-al n-lea termen, selectați-l pe cel pentru care este îndeplinită condiția un 27 > 9:

Deoarece condiția dată trebuie îndeplinită pentru al 27-lea termen al progresiei, înlocuim 27 în loc de n în fiecare dintre cele patru progresii. În a 4-a progresie obținem:

.

Raspuns: 4.

Sarcina 8

În progresie aritmetică a 1= 3, d = -1,5. Specifica cea mai mare valoare n pentru care inegalitatea este valabilă un n > -6.

Dacă pentru fiecare număr natural n meci număr real un n , atunci ei spun că este dat succesiune de numere :

o 1 , o 2 , o 3 , . . . , un n , . . . .

Deci, secvența de numere este o funcție a argumentului natural.

Număr o 1 numit primul termen al secvenței , număr o 2 al doilea termen al secvenței , număr o 3 treilea și așa mai departe. Număr un n numit al n-lea termen secvente , și un număr natural nnumărul lui .

Din doi membri alăturați un n Şi un n +1 membru al secvenței un n +1 numit ulterior (relativ la un n ), A un n anterior (relativ la un n +1 ).

Pentru a defini o secvență, trebuie să specificați o metodă care vă permite să găsiți un membru al secvenței cu orice număr.

Adesea secvența este specificată folosind formule al n-lea termen , adică o formulă care vă permite să determinați un membru al unei secvențe după numărul acesteia.

De exemplu,

o succesiune de numere impare pozitive poate fi dată prin formula

un n= 2n- 1,

iar succesiunea alternării 1 Şi -1 - formula

b n = (-1)n +1 .

Secvența poate fi determinată formulă recurentă, adică o formulă care exprimă orice membru al secvenței, începând cu unii, prin membrii anteriori (unul sau mai mulți).

De exemplu,

Dacă o 1 = 1 , A un n +1 = un n + 5

o 1 = 1,

o 2 = o 1 + 5 = 1 + 5 = 6,

o 3 = o 2 + 5 = 6 + 5 = 11,

o 4 = o 3 + 5 = 11 + 5 = 16,

o 5 = o 4 + 5 = 16 + 5 = 21.

Dacă a 1= 1, a 2 = 1, un n +2 = un n + un n +1 , atunci primii șapte termeni ai șirului numeric se stabilesc după cum urmează:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

un 5 = a 3 + a 4 = 2 + 3 = 5,

o 6 = o 4 + o 5 = 3 + 5 = 8,

o 7 = o 5 + o 6 = 5 + 8 = 13.

Secvențele pot fi final Şi fără sfârşit .

Secvența este numită final , dacă are un număr finit de membri. Secvența este numită fără sfârşit , dacă are infinit de membri.

De exemplu,

succesiune de numere naturale din două cifre:

10, 11, 12, 13, . . . , 98, 99

final.

Succesiunea numerelor prime:

2, 3, 5, 7, 11, 13, . . .

fără sfârşit.

Secvența este numită crescând , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mare decât precedentul.

Secvența este numită în scădere , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mic decât precedentul.

De exemplu,

2, 4, 6, 8, . . . , 2n, . . . — succesiune crescătoare;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — secvență descrescătoare.

O succesiune ale cărei elemente nu scad pe măsură ce numărul crește sau, dimpotrivă, nu cresc, se numește succesiune monotonă .

Secvențele monotone, în special, sunt secvențe crescătoare și secvențe descrescătoare.

Progresie aritmetică

Progresie aritmetică este o succesiune în care fiecare membru, începând cu al doilea, este egal cu precedentul, la care se adaugă același număr.

o 1 , o 2 , o 3 , . . . , un n, . . .

este o progresie aritmetică dacă pentru orice număr natural n este îndeplinită condiția:

un n +1 = un n + d,

Unde d - un anumit număr.

Astfel, diferența dintre termenii următori și anteriori ai unei progresii aritmetice date este întotdeauna constantă:

a 2 - o 1 = a 3 - o 2 = . . . = un n +1 - un n = d.

Număr d numit diferența de progresie aritmetică.

Pentru a defini o progresie aritmetică, este suficient să indicați primul său termen și diferența.

De exemplu,

Dacă o 1 = 3, d = 4 , atunci găsim primii cinci termeni ai secvenței după cum urmează:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

o 5 = o 4 + d= 15 + 4 = 19.

Pentru o progresie aritmetică cu primul termen o 1 si diferenta d ei n

un n = a 1 + (n- 1)d.

De exemplu,

găsiți al treizecilea termen al progresiei aritmetice

1, 4, 7, 10, . . .

a 1 =1, d = 3,

un 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

un n-1 = a 1 + (n- 2)d,

un n= a 1 + (n- 1)d,

un n +1 = o 1 + nd,

atunci evident

un n=
a n-1 + a n+1
2

Fiecare membru al unei progresii aritmetice, pornind de la al doilea, este egal cu media aritmetica a membrilor precedenti si urmatori.

numerele a, b și c sunt termeni succesivi ai unei progresii aritmetice dacă și numai dacă unul dintre ei este egal cu media aritmetică a celorlalte două.

De exemplu,

un n = 2n- 7 , este o progresie aritmetică.

Să folosim afirmația de mai sus. Avem:

un n = 2n- 7,

un n-1 = 2(n- 1) - 7 = 2n- 9,

un n+1 = 2(n+ 1) - 7 = 2n- 5.

Prin urmare,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = un n,
2
2

Rețineți că n Al treilea termen al unei progresii aritmetice poate fi găsit nu numai prin o 1 , dar și orice anterioară un k

un n = un k + (n- k)d.

De exemplu,

Pentru o 5 poate fi notat

un 5 = a 1 + 4d,

un 5 = a 2 + 3d,

un 5 = a 3 + 2d,

un 5 = a 4 + d.

un n = un n-k + kd,

un n = un n+k - kd,

atunci evident

un n=
o n-k + a n+k
2

orice membru al unei progresii aritmetice, începând de la al doilea, este egal cu jumătate din suma membrilor acestei progresii aritmetice distanțate egal de acesta.

În plus, pentru orice progresie aritmetică este valabilă următoarea egalitate:

a m + a n = a k + a l,

m + n = k + l.

De exemplu,

în progresie aritmetică

1) o 10 = 28 = (25 + 31)/2 = (o 9 + o 11 )/2;

2) 28 = un 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) un 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, deoarece

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ un n,

primul n termenii unei progresii aritmetice este egal cu produsul dintre jumătate din suma termenilor extremi și numărul de termeni:

De aici, în special, rezultă că dacă trebuie să însumați termenii

un k, un k +1 , . . . , un n,

atunci formula anterioară își păstrează structura:

De exemplu,

în progresie aritmetică 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Dacă este dată o progresie aritmetică, atunci cantitățile o 1 , un n, d, nŞiS n legate prin două formule:

Prin urmare, dacă semnificațiile lui trei dintre aceste mărimi sunt date, apoi valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule, combinate într-un sistem de două ecuații cu două necunoscute.

O progresie aritmetică este o succesiune monotonă. În acest caz:

  • Dacă d > 0 , atunci este în creștere;
  • Dacă d < 0 , atunci este în scădere;
  • Dacă d = 0 , atunci secvența va fi staționară.

Progresie geometrică

Progresie geometrică este o succesiune în care fiecare membru, începând de la al doilea, este egal cu precedentul înmulțit cu același număr.

b 1 , b 2 , b 3 , . . . , b n, . . .

este o progresie geometrică dacă pentru orice număr natural n este îndeplinită condiția:

b n +1 = b n · q,

Unde q ≠ 0 - un anumit număr.

Astfel, raportul dintre termenul următor al unei progresii geometrice date și cel precedent este un număr constant:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Număr q numit numitorul progresiei geometrice.

Pentru a defini o progresie geometrică, este suficient să indicați primul său termen și numitorul.

De exemplu,

Dacă b 1 = 1, q = -3 , atunci găsim primii cinci termeni ai secvenței după cum urmează:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 și numitorul q ei n Al treilea termen poate fi găsit folosind formula:

b n = b 1 · qn -1 .

De exemplu,

găsiți al șaptelea termen al progresiei geometrice 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

atunci evident

b n 2 = b n -1 · b n +1 ,

fiecare membru al progresiei geometrice, incepand de la al doilea, este egal cu media geometrica (proportionala) a membrelor precedente si urmatoare.

Întrucât este și inversul adevărat, următoarea afirmație este valabilă:

numerele a, b și c sunt termeni succesivi ai unei progresii geometrice dacă și numai dacă pătratul unuia dintre ele este egal cu produsul celorlalte două, adică unul dintre numere este media geometrică a celorlalte două.

De exemplu,

Să demonstrăm că succesiunea dată de formulă b n= -3 2 n , este o progresie geometrică. Să folosim afirmația de mai sus. Avem:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Prin urmare,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

care dovedeşte afirmaţia dorită.

Rețineți că n Al treilea termen al unei progresii geometrice poate fi găsit nu numai prin b 1 , dar și orice membru anterior b k , pentru care este suficient să folosiți formula

b n = b k · qn - k.

De exemplu,

Pentru b 5 poate fi notat

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

atunci evident

b n 2 = b n - k· b n + k

pătratul oricărui termen al unei progresii geometrice, începând cu al doilea, este egal cu produsul termenilor egal distanțați ai acestei progresii.

În plus, pentru orice progresie geometrică egalitatea este adevărată:

b m· b n= b k· b l,

m+ n= k+ l.

De exemplu,

în progresie geometrică

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , deoarece

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

primul n membrii unei progresii geometrice cu numitor q 0 calculat prin formula:

Și când q = 1 - conform formulei

S n= nb 1

Rețineți că, dacă trebuie să însumați termenii

b k, b k +1 , . . . , b n,

atunci se folosește formula:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

De exemplu,

în progresie geometrică 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Dacă este dată o progresie geometrică, atunci mărimile b 1 , b n, q, nŞi S n legate prin două formule:

Prin urmare, dacă sunt date valorile oricărei trei dintre aceste mărimi, atunci valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule, combinate într-un sistem de două ecuații cu două necunoscute.

Pentru o progresie geometrică cu primul termen b 1 și numitorul q au loc următoarele proprietățile monotonității :

  • progresia crește dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 Şi q> 1;

b 1 < 0 Şi 0 < q< 1;

  • Progresia este în scădere dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 Şi 0 < q< 1;

b 1 < 0 Şi q> 1.

Dacă q< 0 , atunci progresia geometrică este alternativă: termenii săi cu numere impare au același semn ca primul său termen, iar termenii cu numere pare au semnul opus. Este clar că o progresie geometrică alternativă nu este monotonă.

Produsul primului n membrii unei progresii geometrice pot fi calculate folosind formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

De exemplu,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Progresie geometrică în scădere infinită

Progresie geometrică în scădere infinită numită progresie geometrică infinită al cărei modul numitor este mai mic 1 , adică

|q| < 1 .

Rețineți că o progresie geometrică infinit descrescătoare poate să nu fie o succesiune descrescătoare. Se potrivește ocaziei

1 < q< 0 .

Cu un astfel de numitor, succesiunea este alternativă. De exemplu,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Suma unei progresii geometrice infinit descrescătoare numiți numărul de care se apropie fără limită suma primelor n membrii unei progresii cu o creștere nelimitată a numărului n . Acest număr este întotdeauna finit și este exprimat prin formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

De exemplu,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relația dintre progresiile aritmetice și geometrice

Progresiile aritmetice și geometrice sunt strâns legate. Să ne uităm la doar două exemple.

o 1 , o 2 , o 3 , . . . d , Asta

b a 1 , b a 2 , b a 3 , . . . b d .

De exemplu,

1, 3, 5, . . . - progresie aritmetica cu diferenta 2 Şi

7 1 , 7 3 , 7 5 , . . . - progresie geometrică cu numitor 7 2 .

b 1 , b 2 , b 3 , . . . - progresie geometrică cu numitor q , Asta

log a b 1, log a b 2, log a b 3, . . . - progresie aritmetica cu diferenta log aq .

De exemplu,

2, 12, 72, . . . - progresie geometrică cu numitor 6 Şi

lg 2, lg 12, lg 72, . . . - progresie aritmetica cu diferenta lg 6 .

Tip de lecție:învăţarea de materiale noi.

Obiectivele lecției:

  • extinderea și aprofundarea înțelegerii de către elevi a problemelor rezolvate folosind progresia aritmetică; organizarea activităților de căutare ale elevilor la derivarea formulei pentru suma primilor n termeni ai unei progresii aritmetice;
  • dezvoltarea capacității de a dobândi în mod independent noi cunoștințe și de a utiliza cunoștințele deja dobândite pentru a îndeplini o anumită sarcină;
  • dezvoltarea dorintei si nevoii de generalizare a faptelor obtinute, dezvoltand independenta.

Sarcini:

  • rezuma și sistematiza cunoștințele existente pe tema „Progresia aritmetică”;
  • deduceți formule pentru calcularea sumei primilor n termeni ai unei progresii aritmetice;
  • învață cum să aplici formulele obținute la rezolvarea diferitelor probleme;
  • atrage atenţia elevilor asupra procedeului de aflare a valorii unei expresii numerice.

Echipament:

  • fișe cu sarcini pentru lucrul în grupuri și perechi;
  • fișa de punctaj;
  • prezentare„Progresie aritmetică”.

I. Actualizarea cunoștințelor de bază.

1. Munca independentăîn perechi.

prima varianta:

Definiți progresia aritmetică. Scrieți o formulă recurentă care definește o progresie aritmetică. Vă rugăm să oferiți un exemplu de progresie aritmetică și să indicați diferența acesteia.

a 2-a varianta:

Scrieți formula pentru al n-lea termen al unei progresii aritmetice. Găsiți al 100-lea termen al progresiei aritmetice ( un n}: 2, 5, 8 …
În acest moment, doi elevi partea din spate consiliile pregătesc răspunsuri la aceleași întrebări.
Elevii evaluează munca partenerului lor verificându-le pe tablă. (Se predau foile cu răspunsuri.)

2. Momentul jocului.

Sarcina 1.

Profesor. M-am gândit la o progresie aritmetică. Pune-mi doar două întrebări pentru ca după răspunsuri să poți numi rapid al 7-lea termen al acestei progresii. (1, 3, 5, 7, 9, 11, 13, 15…)

Întrebări de la studenți.

  1. Care este al șaselea termen al progresiei și care este diferența?
  2. Care este al optulea termen al progresiei și care este diferența?

Dacă nu mai există întrebări, profesorul le poate stimula - o „interdicție” pe d (diferență), adică nu este permis să întrebați cu ce este egală diferența. Puteți pune întrebări: cu ce este egal al 6-lea termen al progresiei și cu ce este al 8-lea termen al progresiei?

Sarcina 2.

Pe tablă sunt scrise 20 de numere: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Profesorul stă cu spatele la tablă. Elevii sună numărul, iar profesorul sună imediat numărul în sine. Explicați cum pot face asta?

Profesorul își amintește formula pentru al n-lea trimestru a n = 3n – 2și, înlocuind valorile specificate n, găsește valorile corespunzătoare un n.

II. Stabilirea unei sarcini de învățare.

Îmi propun să rezolv o problemă străveche care datează din mileniul II î.Hr., găsită în papirusurile egiptene.

Sarcină:„Să vi se spună: împărțiți 10 măsuri de orz la 10 persoane, diferența dintre fiecare persoană și vecinul său este de 1/8 din măsură.”

  • Cum este această problemă legată de progresia aritmetică a subiectului? (Fiecare persoană următoare primește 1/8 din măsură în plus, ceea ce înseamnă că diferența este d=1/8, 10 persoane, ceea ce înseamnă n=10.)
  • Ce crezi că înseamnă numărul 10 măsuri? (Suma tuturor termenilor progresiei.)
  • Ce altceva trebuie să știți pentru a face ușor și simplu împărțirea orzului în funcție de condițiile problemei? (Primul termen de progresie.)

Obiectivul lecției– obținerea dependenței sumei termenilor progresiei de numărul lor, primul termen și diferența și verificarea dacă problema a fost rezolvată corect în antichitate.

Înainte de a deduce formula, să vedem cum au rezolvat egiptenii antici problema.

Și au rezolvat-o astfel:

1) 10 măsuri: 10 = 1 măsură – cotă medie;
2) 1 măsură ∙ = 2 măsuri – dublată medieîmpărtășește.
Dublat medie cota este suma acțiunilor persoanei a 5-a și a 6-a.
3) 2 masuri – 1/8 masuri = 1 7/8 masuri – dublu fata de persoana a cincea.
4) 1 7/8: 2 = 5/16 – fracțiune de cincime; și așa mai departe, puteți găsi cota fiecărei persoane anterioare și ulterioare.

Obținem secvența:

III. Rezolvarea problemei.

1. Lucrați în grupuri

Grupa I: Aflați suma a 20 de numere naturale consecutive: S 20 =(20+1)∙10 =210.

În general

grupa II: Aflați suma numerelor naturale de la 1 la 100 (Legenda lui Micul Gauss).

S 100 = (1+100)∙50 = 5050

Concluzie:

grupa III: Aflați suma numerelor naturale de la 1 la 21.

Rezolvare: 1+21=2+20=3+19=4+18…

Concluzie:

grupa IV: Aflați suma numerelor naturale de la 1 la 101.

Concluzie:

Această metodă de rezolvare a problemelor luate în considerare se numește „Metoda Gauss”.

2. Fiecare grupă prezintă pe tablă soluția problemei.

3. Generalizarea soluțiilor propuse pentru o progresie aritmetică arbitrară:

a 1, a 2, a 3,..., a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n.

Să găsim această sumă folosind un raționament similar:

4. Am rezolvat problema?(Da.)

IV. Înțelegerea și aplicarea primară a formulelor obținute la rezolvarea problemelor.

1. Verificarea soluției unei probleme vechi folosind formula.

2. Aplicarea formulei în rezolvarea diverselor probleme.

3. Exerciții de dezvoltare a capacității de a aplica formule la rezolvarea problemelor.

A) Nr. 613

Având în vedere: ( a n) - progresie aritmetică;

(a n): 1, 2, 3, …, 1500

Găsi: S 1500

Soluţie: , a 1 = 1 și 1500 = 1500,

B) Având în vedere: ( a n) - progresie aritmetică;
(a n): 1, 2, 3, …
S n = 210

Găsi: n
Soluţie:

V. Munca independentă cu verificare reciprocă.

Denis a început să lucreze ca curier. În prima lună, salariul său a fost de 200 de ruble, în fiecare lună următoare a crescut cu 30 de ruble. Cât a câștigat în total într-un an?

Având în vedere: ( a n) - progresie aritmetică;
a 1 = 200, d=30, n=12
Găsi: S 12
Soluţie:

Răspuns: Denis a primit 4380 de ruble pe an.

VI. Instruirea temelor pentru acasă.

  1. Secțiunea 4.3 – învață derivarea formulei.
  2. №№ 585, 623 .
  3. Creați o problemă care poate fi rezolvată folosind formula pentru suma primilor n termeni ai unei progresii aritmetice.

VII. Rezumând lecția.

1. Fișa de punctaj

2. Continuați propozițiile

  • Astăzi la clasă am învățat...
  • Formule invatate...
  • Eu cred că...

3. Puteți găsi suma numerelor de la 1 la 500? Ce metodă veți folosi pentru a rezolva această problemă?

Referințe.

1. Algebră, clasa a IX-a. Manual pentru instituțiile de învățământ general. Ed. G.V. Dorofeeva. M.: „Iluminismul”, 2009.

Publicații pe această temă