Găsiți online ecuația unei drepte care trece prin puncte. Diverse ecuații de linii

Linia care trece prin punctul K(x 0 ; y 0) și paralelă cu dreapta y = kx + a se găsește prin formula:

y - y 0 = k(x - x 0) (1)

Unde k este panta dreptei.

Formula alternativa:
O dreaptă care trece prin punctul M 1 (x 1 ; y 1) și paralelă cu dreapta Ax+By+C=0 este reprezentată prin ecuație

A(x-x1)+B(y-y1)=0. (2)

Scrieți o ecuație pentru o dreaptă care trece prin punctul K( ;) paralelă cu dreapta y = x+ .
Exemplul nr. 1. Scrieți o ecuație pentru o dreaptă care trece prin punctul M 0 (-2,1) și în același timp:
a) paralel cu dreapta 2x+3y -7 = 0;
b) perpendicular pe dreapta 2x+3y -7 = 0.
Soluţie . Să ne imaginăm ecuația cu panta sub forma y = kx + a. Pentru a face acest lucru, transferați toate valorile cu excepția y la partea dreaptă: 3y = -2x + 7 . Apoi împărțiți partea dreaptă cu un factor de 3. Se obține: y = -2/3x + 7/3
Să găsim ecuația NK care trece prin punctul K(-2;1), paralelă cu dreapta y = -2 / 3 x + 7 / 3
Înlocuind x 0 = -2, k = -2 / 3, y 0 = 1 obținem:
y-1 = -2 / 3 (x-(-2))
sau
y = -2 / 3 x - 1 / 3 sau 3y + 2x +1 = 0

Exemplul nr. 2. Scrieți ecuația unei drepte paralele cu dreapta 2x + 5y = 0 și formând împreună cu axele de coordonate un triunghi a cărui aria este 5.
Soluţie . Deoarece liniile sunt paralele, ecuația dreptei dorite este 2x + 5y + C = 0. Aria triunghi dreptunghic, unde a și b sunt picioarele sale. Să găsim punctele de intersecție ale liniei dorite cu axele de coordonate:
;
.
Deci, A(-C/2,0), B(0,-C/5). Să o înlocuim în formula pentru zonă: . Obținem două soluții: 2x + 5y + 10 = 0 și 2x + 5y – 10 = 0.

Exemplul nr. 3. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2; 5) și paralelă cu dreapta 5x-7y-4=0.
Soluţie. Această linie dreaptă poate fi reprezentată prin ecuația y = 5 / 7 x – 4 / 7 (aici a = 5 / 7). Ecuația dreptei dorite este y – 5 = 5 / 7 (x – (-2)), adică. 7(y-5)=5(x+2) sau 5x-7y+45=0.

Exemplul nr. 4. După ce am rezolvat exemplul 3 (A=5, B=-7) folosind formula (2), găsim 5(x+2)-7(y-5)=0.

Exemplul nr. 5. Scrieți o ecuație pentru o dreaptă care trece prin punctul (-2;5) și paralelă cu dreapta 7x+10=0.
Soluţie. Aici A=7, B=0. Formula (2) dă 7(x+2)=0, adică. x+2=0. Formula (1) nu este aplicabilă, deoarece această ecuație nu poate fi rezolvată în raport cu y (această linie dreaptă este paralelă cu axa ordonatelor).

Acest articol continuă subiectul ecuației unei drepte pe un plan: vom considera acest tip de ecuație drept ecuația generală a unei drepte. Să definim teorema și să dăm dovada acesteia; Să ne dăm seama ce este o ecuație generală incompletă a unei linii și cum să facem tranziții de la ecuație generală la alte tipuri de ecuații de linii. Vom consolida întreaga teorie cu ilustrații și soluții la probleme practice.

Yandex.RTB R-A-339285-1

Fie specificat în plan un sistem de coordonate dreptunghiular O x y.

Teorema 1

Orice ecuație de gradul I, având forma A x + B y + C = 0, unde A, B, C sunt unele numere reale(A și B nu sunt egale cu zero în același timp) definește o linie dreaptă într-un sistem de coordonate dreptunghiular pe un plan. La rândul său, orice linie dreaptă dintr-un sistem de coordonate dreptunghiular pe un plan este determinată de o ecuație care are forma A x + B y + C = 0 pentru un anumit set de valori A, B, C.

Dovada

Această teoremă constă din două puncte pe care le vom demonstra;

  1. Să demonstrăm că ecuația A x + B y + C = 0 definește o dreaptă pe plan.

Să existe un punct M 0 (x 0 , y 0) ale cărui coordonate corespund ecuației A x + B y + C = 0. Astfel: A x 0 + B y 0 + C = 0. Scădeți din laturile stânga și dreapta ale ecuațiilor A x + B y + C = 0 laturile stânga și dreapta ale ecuației A x 0 + B y 0 + C = 0, obținem o nouă ecuație care arată ca A (x - x 0) + B (y - y 0) = 0 . Este echivalent cu A x + B y + C = 0.

Ecuația rezultată A (x - x 0) + B (y - y 0) = 0 este o condiție necesară și suficientă pentru perpendicularitatea vectorilor n → = (A, B) și M 0 M → = (x - x) 0, y - y 0). Astfel, mulțimea de puncte M (x, y) definește o dreaptă într-un sistem de coordonate dreptunghiular perpendicular pe direcția vectorului n → = (A, B). Putem presupune că nu este așa, dar atunci vectorii n → = (A, B) și M 0 M → = (x - x 0, y - y 0) nu ar fi perpendiculari, iar egalitatea A (x - x 0 ) + B (y - y 0) = 0 nu ar fi adevărat.

În consecință, ecuația A (x - x 0) + B (y - y 0) = 0 definește o anumită dreaptă într-un sistem de coordonate dreptunghiular pe plan și, prin urmare, ecuația echivalentă A x + B y + C = 0 definește aceeași linie. Așa am demonstrat prima parte a teoremei.

  1. Să prezentăm o dovadă că orice dreaptă dintr-un sistem de coordonate dreptunghiular pe un plan poate fi specificată printr-o ecuație de gradul I A x + B y + C = 0.

Să definim o dreaptă a într-un sistem de coordonate dreptunghiular pe un plan; punctul M 0 (x 0 , y 0) prin care trece această dreaptă, precum și vectorul normal al acestei drepte n → = (A, B) .

Să existe și un punct M (x, y) - un punct flotant pe o dreaptă. În acest caz, vectorii n → = (A, B) și M 0 M → = (x - x 0, y - y 0) sunt perpendiculari între ei, iar produsul lor scalar este zero:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

Să rescriem ecuația A x + B y - A x 0 - B y 0 = 0, definim C: C = - A x 0 - B y 0 și ca rezultat final obținem ecuația A x + B y + C = 0.

Deci, am demonstrat a doua parte a teoremei și am demonstrat întreaga teoremă ca întreg.

Definiția 1

O ecuație a formei A x + B y + C = 0 - Asta ecuația generală a unei linii pe un plan într-un sistem de coordonate dreptunghiularOxy.

Pe baza teoremei dovedite, putem concluziona că o dreaptă și ecuația ei generală definite pe un plan într-un sistem de coordonate dreptunghiular fix sunt indisolubil legate. Cu alte cuvinte, linia originală corespunde ecuației sale generale; ecuația generală a unei linii corespunde unei linii date.

Din demonstrarea teoremei mai rezultă că coeficienții A și B pentru variabilele x și y sunt coordonatele vectorului normal al dreptei, care este dat de ecuația generală a dreptei A x + B y + C = 0.

Să luăm în considerare un exemplu specific de ecuație generală a unei linii drepte.

Să fie dată ecuația 2 x + 3 y - 2 = 0, care corespunde unei linii drepte într-un sistem de coordonate dreptunghiular dat. Vectorul normal al acestei linii este vectorul n → = (2, 3) ​​. Să desenăm linia dreaptă dată în desen.

De asemenea, putem afirma următoarele: linia dreaptă pe care o vedem în desen este determinată de ecuația generală 2 x + 3 y - 2 = 0, deoarece coordonatele tuturor punctelor de pe o dreaptă dată corespund acestei ecuații.

Putem obține ecuația λ · A x + λ · B y + λ · C = 0 prin înmulțirea ambelor părți ale ecuației generale a dreptei cu un număr λ nu egal cu zero. Ecuația rezultată este echivalentă cu ecuația generală inițială, prin urmare, va descrie aceeași linie dreaptă pe plan.

Definiția 2

Ecuația generală completă a unei linii– o astfel de ecuație generală a dreptei A x + B y + C = 0, în care numerele A, B, C sunt diferite de zero. În caz contrar, ecuația este incomplet.

Să analizăm toate variațiile ecuației generale incomplete a unei linii.

  1. Când A = 0, B ≠ 0, C ≠ 0, ecuația generală ia forma B y + C = 0. O astfel de ecuație generală incompletă definește într-un sistem de coordonate dreptunghiular O x y o linie dreaptă care este paralelă cu axa O x, deoarece pentru orice valoare reală a lui x variabila y va lua valoarea - C B . Cu alte cuvinte, ecuația generală a dreptei A x + B y + C = 0, când A = 0, B ≠ 0, specifică locul punctelor (x, y), ale căror coordonate sunt egale cu același număr - C B .
  2. Dacă A = 0, B ≠ 0, C = 0, ecuația generală ia forma y = 0. Acest ecuație incompletă defineşte axa absciselor O x .
  3. Când A ≠ 0, B = 0, C ≠ 0, obținem o ecuație generală incompletă A x + C = 0, definind o dreaptă paralelă cu ordonata.
  4. Fie A ≠ 0, B = 0, C = 0, atunci ecuația generală incompletă va lua forma x = 0, iar aceasta este ecuația dreptei de coordonate O y.
  5. În cele din urmă, pentru A ≠ 0, B ≠ 0, C = 0, ecuația generală incompletă ia forma A x + B y = 0. Și această ecuație descrie o linie dreaptă care trece prin origine. De fapt, perechea de numere (0, 0) corespunde egalității A x + B y = 0, deoarece A · 0 + B · 0 = 0.

Să ilustrăm grafic toate tipurile de mai sus de ecuații generale incomplete ale unei linii drepte.

Exemplul 1

Se știe că dreapta dată este paralelă cu axa ordonatelor și trece prin punctul 2 7, - 11. Este necesar să scrieți ecuația generală a dreptei date.

Soluţie

O dreaptă paralelă cu axa ordonatelor este dată de o ecuație de forma A x + C = 0, în care A ≠ 0. Condiția specifică și coordonatele punctului prin care trece linia, iar coordonatele acestui punct îndeplinesc condițiile ecuației generale incomplete A x + C = 0, adică. egalitatea este adevarata:

A 2 7 + C = 0

Din aceasta este posibil să se determine C dacă îi dăm lui A o valoare diferită de zero, de exemplu, A = 7. În acest caz, obținem: 7 · 2 7 + C = 0 ⇔ C = - 2. Cunoaștem ambii coeficienți A și C, înlocuiți-i în ecuația A x + C = 0 și obținem ecuația dreaptă necesară: 7 x - 2 = 0

Răspuns: 7 x - 2 = 0

Exemplul 2

Desenul arată o linie dreaptă, trebuie să scrieți ecuația acesteia.

Soluţie

Desenul dat ne permite să luăm cu ușurință datele inițiale pentru a rezolva problema. Vedem în desen că linia dreaptă dată este paralelă cu axa O x și trece prin punctul (0, 3).

Linia dreaptă, care este paralelă cu abscisa, este determinată de ecuația generală incompletă B y + C = 0. Să găsim valorile lui B și C. Coordonatele punctului (0, 3), deoarece linia dată trece prin el, vor satisface ecuația dreptei B y + C = 0, atunci egalitatea este valabilă: B · 3 + C = 0. Să setăm B la o altă valoare decât zero. Să spunem B = 1, caz în care din egalitatea B · 3 + C = 0 putem găsi C: C = - 3. Folosind valorile cunoscute ale lui B și C, obținem ecuația necesară a dreptei: y - 3 = 0.

Răspuns: y - 3 = 0 .

Ecuația generală a unei drepte care trece printr-un punct dat dintr-un plan

Să treacă dreapta dată prin punctul M 0 (x 0 , y 0), apoi coordonatele ei corespund ecuației generale a dreptei, adică. egalitatea este adevărată: A x 0 + B y 0 + C = 0. Să scădem părțile stânga și dreaptă ale acestei ecuații din partea stângă și dreaptă a generalului ecuație completă direct. Se obține: A (x - x 0) + B (y - y 0) + C = 0, această ecuație este echivalentă cu cea generală inițială, trece prin punctul M 0 (x 0, y 0) și are o normală vector n → = (A, B) .

Rezultatul pe care l-am obținut face posibilă notarea ecuației generale a unei drepte cu coordonatele cunoscute ale vectorului normal al dreptei și coordonatele unui anumit punct al acestei drepte.

Exemplul 3

Dat un punct M 0 (- 3, 4) prin care trece o dreaptă și vectorul normal al acestei linii n → = (1 , - 2) . Este necesar să scrieți ecuația dreptei date.

Soluţie

Condițiile inițiale ne permit să obținem datele necesare pentru compilarea ecuației: A = 1, B = - 2, x 0 = - 3, y 0 = 4. Apoi:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 (x - (- 3)) - 2 y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

Problema ar fi putut fi rezolvată altfel. Ecuația generală a unei drepte este A x + B y + C = 0. Vectorul normal dat ne permite să obținem valorile coeficienților A și B, atunci:

A x + B y + C = 0 ⇔ 1 x - 2 y + C = 0 ⇔ x - 2 y + C = 0

Acum să găsim valoarea lui C folosind punctul M 0 (- 3, 4) specificat de condiția problemei, prin care trece linia dreaptă. Coordonatele acestui punct corespund ecuației x - 2 · y + C = 0, adică. - 3 - 2 4 + C = 0. Prin urmare, C = 11. Ecuația de linie dreaptă necesară ia forma: x - 2 · y + 11 = 0.

Răspuns: x - 2 y + 11 = 0 .

Exemplul 4

Având în vedere o dreaptă 2 3 x - y - 1 2 = 0 și un punct M 0 situat pe această dreaptă. Numai abscisa acestui punct este cunoscută și este egală cu - 3. Este necesar să se determine ordonata unui punct dat.

Soluţie

Să desemnăm coordonatele punctului M 0 ca x 0 și y 0 . Datele sursă indică faptul că x 0 = - 3. Deoarece punctul aparține unei linii date, atunci coordonatele sale corespund ecuației generale a acestei linii. Atunci egalitatea va fi adevărată:

2 3 x 0 - y 0 - 1 2 = 0

Definiți y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

Răspuns: - 5 2

Trecerea de la ecuația generală a unei linii la alte tipuri de ecuații ale unei linii și înapoi

După cum știm, există mai multe tipuri de ecuații pentru aceeași linie dreaptă pe un plan. Alegerea tipului de ecuație depinde de condițiile problemei; se poate alege pe cel mai convenabil pentru rezolvare. Abilitatea de a converti o ecuație de un tip într-o ecuație de alt tip este foarte utilă aici.

Mai întâi, să considerăm trecerea de la ecuația generală de forma A x + B y + C = 0 la ecuația canonică x - x 1 a x = y - y 1 a y.

Dacă A ≠ 0, atunci mutăm termenul B y în partea dreaptă a ecuației generale. În partea stângă scoatem A din paranteze. Ca rezultat, obținem: A x + C A = - B y.

Această egalitate poate fi scrisă ca proporție: x + C A - B = y A.

Dacă B ≠ 0, lăsăm doar termenul A x în partea stângă a ecuației generale, transferăm pe celelalte în partea dreaptă, obținem: A x = - B y - C. Scoatem – B din paranteze, apoi: A x = - B y + C B .

Să rescriem egalitatea ca proporție: x - B = y + C B A.

Desigur, nu este nevoie să memorezi formulele rezultate. Este suficient să cunoașteți algoritmul acțiunilor atunci când treceți de la o ecuație generală la una canonică.

Exemplul 5

Este dată ecuația generală a dreptei 3 y - 4 = 0. Trebuie convertit în ecuație canonică.

Soluţie

Să scriem ecuația inițială ca 3 y - 4 = 0. În continuare, procedăm conform algoritmului: termenul 0 x rămâne în partea stângă; iar pe partea dreaptă punem - 3 din paranteze; obținem: 0 x = - 3 y - 4 3 .

Să scriem egalitatea rezultată ca proporție: x - 3 = y - 4 3 0 . Astfel, am obținut o ecuație de formă canonică.

Răspuns: x - 3 = y - 4 3 0.

Pentru a converti ecuația generală a unei linii în cele parametrice, se face mai întâi o tranziție la forma canonică, apoi o tranziție de la ecuația canonică a unei linii la ecuații parametrice.

Exemplul 6

Linia dreaptă este dată de ecuația 2 x - 5 y - 1 = 0. Notați ecuațiile parametrice pentru această dreaptă.

Soluţie

Să facem trecerea de la ecuația generală la cea canonică:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Acum luăm ambele părți ale ecuației canonice rezultate egale cu λ, atunci:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Răspuns:x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Ecuația generală poate fi convertită într-o ecuație a unei drepte cu panta y = k · x + b, dar numai când B ≠ 0. Pentru tranziție, lăsăm termenul B y în partea stângă, restul sunt transferați la dreapta. Se obține: B y = - A x - C . Să împărțim ambele părți ale egalității rezultate la B, diferit de zero: y = - A B x - C B.

Exemplul 7

Ecuația generală a dreptei este dată: 2 x + 7 y = 0. Trebuie să convertiți acea ecuație într-o ecuație a pantei.

Soluţie

Să efectuăm acțiunile necesare conform algoritmului:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

Răspuns: y = - 2 7 x .

Din ecuația generală a unei linii, este suficient să obțineți pur și simplu o ecuație în segmente de forma x a + y b = 1. Pentru a face o astfel de tranziție, mutăm numărul C în partea dreaptă a egalității, împărțim ambele părți ale egalității rezultate la – C și, în final, transferăm coeficienții pentru variabilele x și y la numitori:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

Exemplul 8

Este necesar să se transforme ecuația generală a dreptei x - 7 y + 1 2 = 0 în ecuația dreptei în segmente.

Soluţie

Să mutăm 1 2 în partea dreaptă: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Să împărțim ambele părți ale egalității la -1/2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Răspuns: x - 1 2 + y 1 14 = 1 .

În general, trecerea inversă este și ea ușoară: de la alte tipuri de ecuații la cea generală.

Ecuația unei linii drepte în segmente și o ecuație cu un coeficient unghiular pot fi ușor convertite într-una generală prin simpla colectare a tuturor termenilor din partea stângă a egalității:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

Ecuația canonică este convertită într-una generală conform următoarei scheme:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Pentru a trece de la cele parametrice, treceți mai întâi la cea canonică, apoi la cea generală:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0

Exemplul 9

Sunt date ecuațiile parametrice ale dreptei x = - 1 + 2 · λ y = 4. Este necesar să scrieți ecuația generală a acestei linii.

Soluţie

Să facem tranziția de la ecuațiile parametrice la cele canonice:

x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0

Să trecem de la canonic la general:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

Răspuns: y - 4 = 0

Exemplul 10

Este dată ecuația unei drepte în segmentele x 3 + y 1 2 = 1. Este necesară trecerea la forma generală a ecuației.

Soluţie:

Pur și simplu rescriem ecuația în forma necesară:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

Răspuns: 1 3 x + 2 y - 1 = 0 .

Întocmirea unei ecuații generale a unei drepte

Am spus mai sus că ecuația generală poate fi scrisă cu coordonatele cunoscute ale vectorului normal și coordonatele punctului prin care trece dreapta. O astfel de linie dreaptă este definită de ecuația A (x - x 0) + B (y - y 0) = 0. Acolo am analizat și exemplul corespunzător.

Acum să ne uităm la mai multe exemple complexe, în care mai întâi trebuie să determinați coordonatele vectorului normal.

Exemplul 11

Dată o dreaptă paralelă cu dreapta 2 x - 3 y + 3 3 = 0. Se cunoaşte şi punctul M 0 (4, 1) prin care trece linia dată. Este necesar să scrieți ecuația dreptei date.

Soluţie

Condițiile inițiale ne spun că dreptele sunt paralele, apoi, ca vector normal al dreptei, a cărei ecuație trebuie scrisă, luăm vectorul direcție al dreptei n → = (2, - 3): 2 x - 3 y + 3 3 = 0. Acum cunoaștem toate datele necesare pentru a crea ecuația generală a dreptei:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

Răspuns: 2 x - 3 y - 5 = 0 .

Exemplul 12

Linia dată trece prin originea perpendiculară pe dreapta x - 2 3 = y + 4 5. Este necesar să se creeze o ecuație generală pentru o linie dată.

Soluţie

Vectorul normal al unei linii date va fi vectorul direcție al dreptei x - 2 3 = y + 4 5.

Atunci n → = (3, 5) . Linia dreaptă trece prin origine, adică. prin punctul O (0, 0). Să creăm o ecuație generală pentru o linie dreaptă dată:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

Răspuns: 3 x + 5 y = 0 .

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Ecuația unei drepte pe un plan.
Vectorul direcție este drept. Vector normal

O linie dreaptă pe un plan este una dintre cele mai simple forme geometrice, vă este familiar încă din școala elementară, iar astăzi vom învăța cum să o facem cu ajutorul metodelor geometriei analitice. Pentru a stăpâni materialul, trebuie să fii capabil să construiești o linie dreaptă; cunoașteți ce ecuație definește o dreaptă, în special o dreaptă care trece prin originea coordonatelor și drepte paralele cu axele de coordonate. Aceste informații pot fi găsite în manual Grafice și proprietăți ale funcțiilor elementare, l-am creat pentru matan, dar secțiunea despre funcţie liniară S-a dovedit foarte reușit și detaliat. Prin urmare, dragi ceainice, încălziți-vă mai întâi acolo. În plus, trebuie să aveți cunoștințe de bază despre vectori, altfel înțelegerea materialului va fi incompletă.

Pe această lecție Vom analiza modalități prin care puteți crea o ecuație a unei linii drepte pe un plan. Recomand să nu neglijăm exemplele practice (chiar dacă par foarte simple), întrucât le voi pune la dispoziție fapte elementare și importante, tehnici tehnice care vor fi necesare în viitor, inclusiv în alte secțiuni de matematică superioară.

  • Cum se scrie o ecuație a unei linii drepte cu un coeficient de unghi?
  • Cum ?
  • Cum să găsiți un vector de direcție folosind ecuația generală a unei linii drepte?
  • Cum se scrie o ecuație a unei drepte având în vedere un punct și un vector normal?

si incepem:

Ecuația unei drepte cu panta

Cunoscuta formă „școală” a unei ecuații în linie dreaptă se numește ecuația unei drepte cu panta. De exemplu, dacă o dreaptă este dată de ecuație, atunci panta ei este: . Să luăm în considerare semnificația geometrică a acestui coeficient și modul în care valoarea lui afectează locația liniei:

Într-un curs de geometrie se dovedeşte că panta dreptei este egală cu tangenta unghiuluiîntre direcția pozitivă a axeiși această linie: , iar unghiul „se deșuruba” în sens invers acelor de ceasornic.

Pentru a nu aglomera desenul, am desenat unghiuri doar pentru două linii drepte. Să luăm în considerare linia „roșie” și panta acesteia. Conform celor de mai sus: (unghiul „alfa” este indicat printr-un arc verde). Pentru linia dreaptă „albastră” cu coeficientul unghiului, egalitatea este adevărată (unghiul „beta” este indicat printr-un arc maro). Și dacă tangenta unghiului este cunoscută, atunci, dacă este necesar, este ușor de găsit și colțul însuși prin folosire functie inversa– arctangent. După cum se spune, un tabel trigonometric sau un microcalculator în mâinile tale. Astfel, coeficientul unghiular caracterizează gradul de înclinare a dreptei faţă de axa absciselor.

Sunt posibile următoarele cazuri:

1) Dacă panta este negativă: atunci linia, aproximativ vorbind, merge de sus în jos. Exemple sunt liniile drepte „albastre” și „zmeură” din desen.

2) Dacă panta este pozitivă: atunci linia merge de jos în sus. Exemple - linii drepte „negre” și „roșii” în desen.

3) Dacă panta este zero: , atunci ecuația ia forma , iar dreapta corespunzătoare este paralelă cu axa. Un exemplu este linia dreaptă „galbenă”.

4) Pentru o familie de linii paralele cu o axă (nu există niciun exemplu în desen, cu excepția axei în sine), coeficientul unghiular nu exista (tangenta de 90 de grade nu este definită).

Cu cât coeficientul de pantă în valoare absolută este mai mare, cu atât graficul în linie dreaptă este mai abrupt..

De exemplu, luați în considerare două linii drepte. Aici, așadar, linia dreaptă are o pantă mai abruptă. Permiteți-mi să vă reamintesc că modulul vă permite să ignorați semnul, ne interesează doar valori absolute coeficienți unghiulari.

La rândul său, o linie dreaptă este mai abruptă decât liniile drepte .

Dimpotrivă: cu cât coeficientul de pantă este mai mic în valoare absolută, cu atât linia dreaptă este mai plată.

Pentru linii drepte inegalitatea este adevărată, astfel linia dreaptă este mai plată. Tobogan pentru copii, pentru a nu-ți da vânătăi și lovituri.

De ce este necesar acest lucru?

Prelungiți-vă chinul Cunoașterea faptelor de mai sus vă permite să vă vedeți imediat greșelile, în special erorile atunci când construiți grafice - dacă desenul se dovedește a fi „evident ceva greșit”. Este recomandabil ca dvs pe loc era clar că, de exemplu, linia dreaptă este foarte abruptă și merge de jos în sus, iar linia dreaptă este foarte plată, apăsată aproape de axă și merge de sus în jos.

În problemele geometrice, apar adesea mai multe linii drepte, așa că este convenabil să le desemnați cumva.

Denumiri: liniile drepte sunt desemnate mici cu litere latine: . O opțiune populară este de a le desemna folosind aceeași literă cu indicele naturale. De exemplu, cele cinci linii la care tocmai ne-am uitat pot fi notate cu .

Deoarece orice linie dreaptă este determinată în mod unic de două puncte, ea poate fi notată prin următoarele puncte: etc. Denumirea implică în mod clar că punctele aparțin liniei.

E timpul sa ne incalzim putin:

Cum se scrie o ecuație a unei linii drepte cu un coeficient de unghi?

Dacă se cunosc un punct aparținând unei anumite drepte și coeficientul unghiular al acestei drepte, atunci ecuația acestei drepte se exprimă prin formula:

Exemplul 1

Scrieți o ecuație a unei drepte cu coeficient unghiular dacă se știe că punctul aparține acestei drepte.

Soluţie: Să compunem ecuația dreptei folosind formula . ÎN în acest caz,:

Răspuns:

Examinare se face simplu. În primul rând, ne uităm la ecuația rezultată și ne asigurăm că panta noastră este la locul său. În al doilea rând, coordonatele punctului trebuie să satisfacă această ecuație. Să le conectăm în ecuație:

Se obține egalitatea corectă, ceea ce înseamnă că punctul satisface ecuația rezultată.

Concluzie: Ecuația a fost găsită corect.

Un exemplu mai complicat pentru decizie independentă:

Exemplul 2

Scrieți o ecuație pentru o dreaptă dacă se știe că unghiul său de înclinare față de direcția pozitivă a axei este , iar punctul aparține acestei drepte.

Dacă aveți dificultăți, recitiți materialul teoretic. Mai precis, mai practic, sar peste multe dovezi.

A sunat ultimul apel, petrecerea de absolvire s-a stins, iar în afara porților școlii noastre natale ne așteaptă însăși geometria analitică. Glumele s-au terminat... Sau poate abia incep =)

Ne fluturăm cu nostalgie stiloul către familiar și ne familiarizăm cu ecuația generală a unei linii drepte. Pentru că în geometria analitică este exact ceea ce se folosește:

Ecuația generală a unei drepte are forma: , unde sunt câteva numere. În același timp, coeficienții simultan nu sunt egale cu zero, deoarece ecuația își pierde sensul.

Să ne îmbrăcăm într-un costum și să legăm ecuația cu coeficientul de pantă. Mai întâi, să mutăm toți termenii la partea stângă:

Termenul cu „X” trebuie pus pe primul loc:

În principiu, ecuația are deja forma , dar conform regulilor de etichetă matematică, coeficientul primului termen (în acest caz) trebuie să fie pozitiv. Schimbarea semnelor:

Amintește-ți asta caracteristica tehnica! Facem primul coeficient (cel mai des) pozitiv!

În geometria analitică, ecuația unei linii drepte va fi aproape întotdeauna dată în formă generală. Ei bine, dacă este necesar, poate fi ușor redus la forma „școală” cu un coeficient unghiular (cu excepția liniilor drepte paralele cu axa ordonatelor).

Să ne întrebăm ce suficientștii să construiești o linie dreaptă? Două puncte. Dar mai multe despre acest incident din copilărie, acum se lipește cu regula săgeților. Fiecare linie dreaptă are o pantă foarte specifică, la care este ușor de „adaptat”. vector.

Un vector care este paralel cu o dreaptă se numește vector de direcție al acelei drepte. Este evident că orice linie dreaptă are infinit de vectori de direcție și toți vor fi coliniari (co-direcțional sau nu - nu contează).

Voi nota vectorul de direcție astfel: .

Dar un vector nu este suficient pentru a construi o linie dreaptă, vectorul este liber și nu este legat de niciun punct din plan. Prin urmare, în plus, este necesar să cunoașteți un punct care aparține liniei.

Cum se scrie o ecuație a unei linii drepte folosind un punct și un vector de direcție?

Dacă un anumit punct aparținând unei linii și vectorul de direcție al acestei linii sunt cunoscute, atunci ecuația acestei linii poate fi compilată folosind formula:

Uneori se numește ecuația canonică a dreptei .

Ce să faci când una dintre coordonate este egal cu zero, vom înțelege în exemplele practice de mai jos. Apropo, vă rugăm să rețineți - ambele deodată coordonatele nu pot fi egale cu zero, deoarece vectorul zero nu specifică o direcție specifică.

Exemplul 3

Scrieți o ecuație pentru o dreaptă folosind un punct și un vector de direcție

Soluţie: Să compunem ecuația unei linii drepte folosind formula. În acest caz:

Folosind proprietățile proporției, scăpăm de fracții:

Și aducem ecuația la forma ei generală:

Răspuns:

De regulă, nu este nevoie să faceți un desen în astfel de exemple, ci de dragul înțelegerii:

În desen vedem punctul de plecare, vectorul de direcție inițial (poate fi reprezentat din orice punct al planului) și linia dreaptă construită. Apropo, în multe cazuri este cel mai convenabil să construiți o linie dreaptă folosind o ecuație cu un coeficient unghiular. Ecuația noastră poate fi ușor convertită în formă și fără probleme la selectarea unui alt punct pentru a construi o linie dreaptă.

După cum s-a menționat la începutul paragrafului, o linie dreaptă are infiniti vectori de direcție și toți sunt coliniari. De exemplu, am desenat trei astfel de vectori: . Indiferent de vectorul de direcție pe care îl alegem, rezultatul va fi întotdeauna aceeași ecuație de linie dreaptă.

Să creăm o ecuație a unei linii drepte folosind un punct și un vector de direcție:

Rezolvarea proporției:

Împărțiți ambele părți la –2 și obțineți ecuația familiară:

Cei interesați pot testa vectori în același mod sau orice alt vector coliniar.

Acum să rezolvăm problema inversă:

Cum să găsiți un vector de direcție folosind ecuația generală a unei linii drepte?

Foarte simplu:

Dacă o linie este dată de o ecuație generală într-un sistem de coordonate dreptunghiular, atunci vectorul este vectorul de direcție al acestei linii.

Exemple de găsire a vectorilor de direcție ai liniilor drepte:

Declarația ne permite să găsim un singur vector de direcție dintr-un număr infinit, dar nu avem nevoie de mai mult. Deși în unele cazuri este recomandabil să se reducă coordonatele vectorilor de direcție:

Astfel, ecuația specifică o dreaptă care este paralelă cu axa și coordonatele vectorului de direcție rezultat sunt împărțite convenabil la –2, obținându-se exact vectorul de bază ca vector de direcție. Logic.

În mod similar, ecuația specifică o linie dreaptă paralelă cu axa și împărțind coordonatele vectorului la 5, obținem vectorul ort ca vector de direcție.

Acum hai să o facem verificarea Exemplul 3. Exemplul a crescut, așa că vă reamintesc că în el am compilat ecuația unei drepte folosind un vector punct și un vector de direcție

În primul rând, folosind ecuația dreptei îi reconstruim vectorul de direcție: – totul este în regulă, am primit vectorul original (în unele cazuri rezultatul poate fi un vector coliniar cu cel original, iar acest lucru este de obicei ușor de observat prin proporționalitatea coordonatelor corespunzătoare).

În al doilea rând, coordonatele punctului trebuie să satisfacă ecuația. Le substituim în ecuația:

S-a obținut egalitatea corectă, ceea ce ne bucură foarte mult.

Concluzie: Sarcina a fost finalizată corect.

Exemplul 4

Scrieți o ecuație pentru o dreaptă folosind un punct și un vector de direcție

Acesta este un exemplu de rezolvat singur. Soluția și răspunsul sunt la sfârșitul lecției. Este foarte recomandabil să verificați folosind algoritmul discutat. Încercați să verificați întotdeauna (dacă este posibil) un draft. Este o prostie sa faci greseli acolo unde pot fi evitate 100%.

În cazul în care una dintre coordonatele vectorului de direcție este zero, procedați foarte simplu:

Exemplul 5

Soluţie: Formula nu este potrivită deoarece numitorul din partea dreaptă este zero. Există o cale de ieșire! Folosind proprietățile proporției, rescriem formula în formă, iar restul s-a rostogolit de-a lungul unui șanț adânc:

Răspuns:

Examinare:

1) Restabiliți vectorul de direcție al dreptei:
– vectorul rezultat este coliniar cu vectorul de direcție original.

2) Înlocuiți coordonatele punctului în ecuație:

Se obține egalitatea corectă

Concluzie: sarcina finalizată corect

Apare întrebarea, de ce să vă deranjați cu formula dacă există o versiune universală care va funcționa în orice caz? Există două motive. În primul rând, formula este sub forma unei fracții mult mai bine amintit. Și în al doilea rând, dezavantajul formulei universale este că riscul de confuzie crește semnificativ la înlocuirea coordonatelor.

Exemplul 6

Scrieți o ecuație pentru o dreaptă folosind un punct și un vector de direcție.

Acesta este un exemplu de rezolvat singur.

Să revenim la cele două puncte omniprezente:

Cum se scrie o ecuație a unei linii drepte folosind două puncte?

Dacă se cunosc două puncte, atunci ecuația unei drepte care trece prin aceste puncte poate fi compilată folosind formula:

De fapt, acesta este un tip de formulă și iată de ce: dacă se cunosc două puncte, atunci vectorul va fi vectorul de direcție al dreptei date. În clasă Vectori pentru manechine am luat în considerare cea mai simplă sarcină– cum să găsiți coordonatele unui vector din două puncte. Conform acestei probleme, coordonatele vectorului de direcție sunt:

Nota : punctele pot fi „schimbate” și poate fi folosită formula . O astfel de soluție va fi echivalentă.

Exemplul 7

Scrieți o ecuație a unei drepte folosind două puncte .

Soluţie: Folosim formula:

Pieptănarea numitorilor:

Și amestecați puntea:

Acum este momentul să scapi de el numere fracționare. În acest caz, trebuie să înmulțiți ambele părți cu 6:

Deschideți parantezele și aduceți-vă în minte ecuația:

Răspuns:

Examinare este evident - coordonatele punctelor inițiale trebuie să satisfacă ecuația rezultată:

1) Înlocuiți coordonatele punctului:

Adevărata egalitate.

2) Înlocuiți coordonatele punctului:

Adevărata egalitate.

Concluzie: Ecuația dreptei este scrisă corect.

Dacă cel putin unul dintre puncte nu satisface ecuația, căutați o eroare.

Este demn de remarcat faptul că verificarea grafică în acest caz este dificilă, deoarece construiți o linie dreaptă și vedeți dacă punctele îi aparțin , nu chiar atât de simplu.

Voi mai nota câteva aspecte tehnice ale soluției. Poate că în această problemă este mai profitabil să folosiți formula oglindă și, în aceleași puncte faceți o ecuație:

Mai puține fracții. Dacă doriți, puteți duce soluția până la capăt, rezultatul ar trebui să fie aceeași ecuație.

Al doilea punct este să vă uitați la răspunsul final și să vă dați seama dacă ar putea fi simplificat în continuare? De exemplu, dacă obțineți ecuația , atunci este indicat să o reduceți cu două: – ecuația va defini aceeași linie dreaptă. Cu toate acestea, acesta este deja un subiect de conversație poziţia relativă a liniilor.

După ce a primit răspunsul în Exemplul 7, pentru orice eventualitate, am verificat dacă TOȚI coeficienții ecuației sunt divizibili cu 2, 3 sau 7. Deși, cel mai adesea astfel de reduceri se fac în timpul soluției.

Exemplul 8

Scrieți o ecuație pentru o dreaptă care trece prin puncte .

Acesta este un exemplu pentru o soluție independentă, care vă va permite să înțelegeți și să exersați mai bine tehnicile de calcul.

Similar cu paragraful anterior: dacă în formulă unul dintre numitori (coordonata vectorului de direcție) devine zero, apoi îl rescriem sub forma . Din nou, observați cât de stânjenită și confuză arată. Nu văd prea mult rost să aduc exemple practice, întrucât deja am rezolvat o astfel de problemă (vezi nr. 5, 6).

Vector normal direct (vector normal)

Ce este normal? Cu cuvinte simple, normalul este perpendicular. Adică, vectorul normal al unei linii este perpendicular pe o dreaptă dată. Evident, orice linie dreaptă are un număr infinit de ele (precum și vectori de direcție), iar toți vectorii normali ai dreptei vor fi coliniari (codirecționali sau nu, nu are nicio diferență).

Tratarea cu ele va fi chiar mai ușoară decât cu vectorii ghid:

Dacă o dreaptă este dată de o ecuație generală într-un sistem de coordonate dreptunghiular, atunci vectorul este vectorul normal al acestei linii.

Dacă coordonatele vectorului de direcție trebuie să fie „trase” cu atenție din ecuație, atunci coordonatele vectorului normal pot fi pur și simplu „eliminate”.

Vectorul normal este întotdeauna ortogonal cu vectorul de direcție al dreptei. Să verificăm ortogonalitatea acestor vectori folosind produs punctual:

Voi da exemple cu aceleași ecuații ca și pentru vectorul de direcție:

Este posibil să construim o ecuație a unei drepte având în vedere un punct și un vector normal? O simt în intestine, este posibil. Dacă vectorul normal este cunoscut, atunci direcția dreptei în sine este clar definită - aceasta este o „structură rigidă” cu un unghi de 90 de grade.

Cum se scrie o ecuație a unei drepte având în vedere un punct și un vector normal?

Dacă se cunosc un anumit punct aparținând unei linii și vectorul normal al acestei drepte, atunci ecuația acestei linii se exprimă prin formula:

Aici totul a mers fără fracțiuni și alte surprize. Acesta este vectorul nostru normal. Iubește-l. Si respect =)

Exemplul 9

Scrieți o ecuație a unei drepte având în vedere un punct și un vector normal. Găsiți vectorul direcție al dreptei.

Soluţie: Folosim formula:

S-a obținut ecuația generală a dreptei, să verificăm:

1) „Eliminați” coordonatele vectorului normal din ecuație: – da, într-adevăr, vectorul original a fost obținut din condiție (sau ar trebui să se obțină un vector coliniar).

2) Să verificăm dacă punctul satisface ecuația:

Adevărata egalitate.

După ce suntem convinși că ecuația este compusă corect, vom finaliza a doua parte, mai ușoară, a sarcinii. Scoatem vectorul de direcție al dreptei:

Răspuns:

În desen situația arată astfel:

În scopuri de instruire, o sarcină similară pentru rezolvarea independentă:

Exemplul 10

Scrieți o ecuație a unei drepte având în vedere un punct și un vector normal. Găsiți vectorul direcție al dreptei.

Secțiunea finală a lecției va fi dedicată celor mai puțin obișnuite, dar și specii importante ecuațiile unei drepte pe un plan

Ecuația unei drepte în segmente.
Ecuația unei drepte în formă parametrică

Ecuația unei linii drepte în segmente are forma , unde sunt constante nenule. Unele tipuri de ecuații nu pot fi reprezentate în această formă, de exemplu, proporționalitatea directă (deoarece termenul liber este egal cu zero și nu există nicio modalitate de a obține unul în partea dreaptă).

Acesta este, la figurat vorbind, un tip „tehnic” de ecuație. O sarcină comună este de a reprezenta ecuația generală a unei linii ca o ecuație a unei linii în segmente. Cum este convenabil? Ecuația unei drepte în segmente vă permite să găsiți rapid punctele de intersecție ale unei linii cu axe de coordonate, ceea ce poate fi foarte important în unele probleme de matematică superioară.

Să găsim punctul de intersecție al dreptei cu axa. Resetăm „y” la zero, iar ecuația ia forma . Punctul dorit se obtine automat: .

La fel si cu axa – punctul în care dreapta intersectează axa ordonatelor.

Ecuațiile canonice ale unei drepte în spațiu sunt ecuațiile care determină dreapta care trece punct dat coliniar cu vectorul de direcție.

Fie dat un punct și un vector direcție. Un punct arbitrar se află pe o dreaptă l numai dacă vectorii și sunt coliniari, adică condiția este îndeplinită pentru ei:

.

Ecuațiile de mai sus sunt ecuațiile canonice ale dreptei.

Numerele m , nŞi p sunt proiecții ale vectorului direcție pe axele de coordonate. Deoarece vectorul este diferit de zero, atunci toate numerele m , nŞi p nu poate fi simultan egal cu zero. Dar unul sau două dintre ele se pot dovedi a fi zero. În geometria analitică, de exemplu, este permisă următoarea intrare:

,

ceea ce înseamnă că proiecţiile vectorului pe axă OiŞi Oz sunt egale cu zero. Prin urmare, atât vectorul cât și linia definită de ecuațiile canonice sunt perpendiculare pe axele OiŞi Oz, adică avioane yOz .

Exemplul 1. Scrieți ecuații pentru o dreaptă în spațiu perpendiculară pe un plan şi trecând prin punctul de intersecţie a acestui plan cu axa Oz .

Soluţie. Să găsim punctul de intersecție al acestui plan cu axa Oz. Din moment ce orice punct situat pe axă Oz, are coordonatele , atunci, presupunând în ecuația dată a planului x = y = 0, obținem 4 z- 8 = 0 sau z= 2 . Prin urmare, punctul de intersecție al acestui plan cu axa Oz are coordonatele (0; 0; 2) . Deoarece linia dorită este perpendiculară pe plan, este paralelă cu vectorul său normal. Prin urmare, vectorul de direcție al dreptei poate fi vectorul normal avion dat.

Acum să scriem ecuațiile necesare ale unei drepte care trece printr-un punct O= (0; 0; 2) în direcția vectorului:

Ecuațiile unei drepte care trece prin două puncte date

O linie dreaptă poate fi definită prin două puncte aflate pe ea Şi În acest caz, vectorul de direcție al dreptei poate fi vectorul . Atunci ecuațiile canonice ale dreptei iau forma

.

Ecuațiile de mai sus determină o dreaptă care trece prin două puncte date.

Exemplul 2. Scrieți o ecuație pentru o dreaptă din spațiu care trece prin punctele și .

Soluţie. Să scriem ecuațiile necesare ale dreptei în forma dată mai sus în referința teoretică:

.

Deoarece , atunci linia dreaptă dorită este perpendiculară pe axă Oi .

Drept ca linia de intersecție a planelor

O linie dreaptă în spațiu poate fi definită ca linia de intersecție a două plane neparalele și, adică, ca o mulțime de puncte care satisfac un sistem de două ecuații liniare

Ecuațiile sistemului sunt numite și ecuații generale ale unei linii drepte în spațiu.

Exemplul 3. Alcătuiți ecuații canonice ale unei drepte în spațiu date de ecuații generale

Soluţie. Pentru a scrie ecuațiile canonice ale unei linii sau, ceea ce este același lucru, ecuațiile unei linii care trece prin două puncte date, trebuie să găsiți coordonatele oricăror două puncte de pe linie. Ele pot fi punctele de intersecție ale unei drepte cu oricare două planuri de coordonate, De exemplu yOzŞi xOz .

Punct de intersecție a unei drepte și a unui plan yOz are o abscisă x= 0 . Prin urmare, presupunând în acest sistem de ecuații x= 0, obținem un sistem cu două variabile:

Decizia ei y = 2 , z= 6 împreună cu x= 0 definește un punct O(0; 2; 6) linia dorită. Apoi presupunând în sistemul dat de ecuații y= 0, obținem sistemul

Decizia ei x = -2 , z= 0 împreună cu y= 0 definește un punct B(-2; 0; 0) intersecția unei drepte cu un plan xOz .

Acum să scriem ecuațiile dreptei care trece prin puncte O(0; 2; 6) și B (-2; 0; 0) :

,

sau după împărțirea numitorilor la -2:

,

În acest articol vom lua în considerare ecuația generală a unei drepte pe un plan. Să dăm exemple de construcție a unei ecuații generale a unei drepte dacă sunt cunoscute două puncte ale acestei drepte sau dacă se cunosc un punct și vectorul normal al acestei drepte. Să introducem metode de transformare a ecuației în vedere generalăîn vederi canonice și parametrice.

Să fie dat un sistem de coordonate dreptunghiular cartezian arbitrar Oxy. Luați în considerare ecuația de gradul întâi sau ecuație liniară:

Ax+By+C=0, (1)

Unde A, B, C− unele constante, și cel puțin unul dintre elemente OŞi B diferit de zero.

Vom arăta că o ecuație liniară pe un plan definește o dreaptă. Să demonstrăm următoarea teoremă.

Teorema 1. Într-un sistem de coordonate cartezian dreptunghiular arbitrar pe un plan, fiecare dreaptă poate fi specificată printr-o ecuație liniară. În schimb, fiecare ecuație liniară (1) dintr-un sistem de coordonate cartezian dreptunghiular arbitrar pe un plan definește o dreaptă.

Dovada. Este suficient să demonstrăm că linia dreaptă L este determinată de o ecuație liniară pentru orice sistem de coordonate carteziene dreptunghiulare, deoarece atunci va fi determinată de o ecuație liniară pentru orice sistem de coordonate carteziene dreptunghiulare.

Să fie dată o linie dreaptă pe plan L. Să alegem un sistem de coordonate astfel încât axa Bou a coincis cu o linie dreaptă L, și axa Oi era perpendicular pe acesta. Apoi ecuația dreptei L va lua următoarea formă:

y=0. (2)

Toate punctele de pe o linie L va satisface ecuația liniară (2), iar toate punctele din afara acestei linii nu vor satisface ecuația (2). Prima parte a teoremei a fost demonstrată.

Să fie dat un sistem de coordonate dreptunghiular cartezian și să fie dată o ecuație liniară (1), unde cel puțin unul dintre elemente OŞi B diferit de zero. Să găsim locul geometric al punctelor ale căror coordonate satisfac ecuația (1). Deoarece cel puţin unul dintre coeficienţi OŞi B este diferită de zero, atunci ecuația (1) are cel puțin o soluție M(x 0 ,y 0). (De exemplu, când O≠0, punct M 0 (−C/A, 0) aparține locului geometric dat al punctelor). Înlocuind aceste coordonate în (1) obținem identitatea

Topor 0 +De 0 +C=0. (3)

Să scădem identitatea (3) din (1):

O(xx 0)+B(yy 0)=0. (4)

Evident, ecuația (4) este echivalentă cu ecuația (1). Prin urmare, este suficient să demonstrăm că (4) definește o anumită linie.

Deoarece luăm în considerare un sistem de coordonate dreptunghiular cartezian, din egalitatea (4) rezultă că vectorul cu componente ( x−x 0 , y−y 0 ) ortogonală cu vectorul n cu coordonate ( A,B}.

Să luăm în considerare o linie dreaptă L, trecând prin punct M 0 (x 0 , y 0) și perpendicular pe vector n(Fig.1). Lasă punctul M(x,y) aparține liniei L. Apoi vectorul cu coordonatele x−x 0 , y−y 0 perpendiculară nși ecuația (4) este satisfăcută (produsul scalar al vectorilor nși egal cu zero). Dimpotrivă, dacă punct M(x,y) nu se află pe o linie L, apoi vectorul cu coordonatele x−x 0 , y−y 0 nu este ortogonal cu vectorul n iar ecuația (4) nu este satisfăcută. Teorema a fost demonstrată.

Dovada. Deoarece liniile (5) și (6) definesc aceeași linie, atunci vectorii normali n 1 ={O 1 ,B 1) și n 2 ={O 2 ,B 2) coliniare. Din moment ce vectori n 1 ≠0, n 2 ≠0, atunci există un astfel de număr λ , Ce n 2 =n 1 λ . De aici avem: O 2 =O 1 λ , B 2 =B 1 λ . Să demonstrăm asta C 2 =C 1 λ . Evident, liniile care coincid au un punct comun M 0 (x 0 , y 0). Înmulțirea ecuației (5) cu λ și scăzând ecuația (6) din ea obținem:

Deoarece primele două egalități din expresiile (7) sunt satisfăcute, atunci C 1 λ C 2 =0. Aceste. C 2 =C 1 λ . Observația a fost dovedită.

Rețineți că ecuația (4) definește ecuația dreptei care trece prin punct M 0 (x 0 , y 0) și având un vector normal n={A,B). Prin urmare, dacă vectorul normal al unei linii și punctul aparținând acestei drepte sunt cunoscute, atunci ecuația generală a dreptei poate fi construită folosind ecuația (4).

Exemplul 1. O dreaptă trece printr-un punct M=(4,−1) și are un vector normal n=(3, 5). Construiți ecuația generală a unei drepte.

Soluţie. Avem: x 0 =4, y 0 =−1, O=3, B=5. Pentru a construi ecuația generală a unei linii drepte, înlocuim aceste valori în ecuația (4):

Răspuns:

Vectorul este paralel cu dreapta Lși, prin urmare, perperdicular pe vectorul normal al dreptei L. Să construim un vector linie normal L, ținând cont că produsul scalar al vectorilor nși egal cu zero. Putem scrie, de exemplu, n={1,−3}.

Pentru a construi ecuația generală a unei linii drepte, folosim formula (4). Să înlocuim coordonatele punctului în (4) M 1 (putem lua și coordonatele punctului M 2) și vector normal n:

Înlocuind coordonatele punctelor M 1 și M 2 în (9) ne putem asigura că dreapta dată de ecuația (9) trece prin aceste puncte.

Răspuns:

Scădeți (10) din (1):

Am obținut ecuația canonică a dreptei. Vector q={−B, O) este vectorul de direcție al dreptei (12).

Vezi conversia inversă.

Exemplul 3. O dreaptă pe un plan este reprezentată de următoarea ecuație generală:

Să mutam al doilea termen la dreapta și să împărțim ambele părți ale ecuației la 2·5.

Publicații pe această temă