สูตรสำหรับผลรวมของเลขคณิตของความก้าวหน้า ความก้าวหน้าทางคณิตศาสตร์พร้อมตัวอย่าง

ปัญหาความก้าวหน้าทางคณิตศาสตร์มีอยู่แล้วในสมัยโบราณ พวกเขาปรากฏตัวและเรียกร้องวิธีแก้ปัญหาเพราะพวกเขามีความจำเป็นในทางปฏิบัติ

ดังนั้นในปาปิริอันหนึ่ง อียิปต์โบราณ" ซึ่งมีเนื้อหาทางคณิตศาสตร์ - กระดาษปาปิรัส Rhind (ศตวรรษที่ 19 ก่อนคริสต์ศักราช) - มีงานดังต่อไปนี้: แบ่งขนมปังสิบถังให้กับคนสิบคนโดยมีเงื่อนไขว่าความแตกต่างระหว่างแต่ละคนคือหนึ่งในแปดของการวัด"

และในงานคณิตศาสตร์ของชาวกรีกโบราณยังมีทฤษฎีบทอันสง่างามที่เกี่ยวข้องกับความก้าวหน้าทางคณิตศาสตร์ ดังนั้น Hypsicles of Alexandria (ศตวรรษที่ 2 ซึ่งแต่งปัญหาที่น่าสนใจมากมายและเพิ่มหนังสือเล่มที่สิบสี่เข้าไปใน Euclid's Elements) จึงกำหนดแนวคิดขึ้นมา: "ในความก้าวหน้าทางคณิตศาสตร์ซึ่งมี เลขคู่เทอม ผลรวมของเทอมของครึ่งหลังมากกว่าผลรวมของเทอมที่ 1 ด้วยจำนวนเทอมกำลังสองของ 1/2”

ลำดับนี้เขียนแทนด้วย a หมายเลขของลำดับเรียกว่าสมาชิกและมักจะถูกกำหนดด้วยตัวอักษรพร้อมดัชนีที่ระบุหมายเลขซีเรียลของสมาชิกนี้ (a1, a2, a3 ... อ่าน: "ที่ 1", "ที่ 2", "ที่ 3" และอื่น ๆ )

ลำดับอาจเป็นอนันต์หรือจำกัดก็ได้

ความก้าวหน้าทางคณิตศาสตร์คืออะไร? โดยเราหมายถึงสิ่งที่ได้รับจากการบวกเทอมก่อนหน้า (n) ด้วยตัวเลข d เดียวกัน ซึ่งเป็นผลต่างของความก้าวหน้า

ถ้าง<0, то мы имеем убывающую прогрессию. Если d>0 แล้วถือว่าความก้าวหน้านี้เพิ่มขึ้น

ความก้าวหน้าทางคณิตศาสตร์เรียกว่าไฟไนต์หากพิจารณาเพียงสองสามเทอมแรกเท่านั้น อย่างมาก ปริมาณมากสมาชิกอยู่แล้ว ความก้าวหน้าไม่รู้จบ.

ความก้าวหน้าทางคณิตศาสตร์ใดๆ ถูกกำหนดโดยสูตรต่อไปนี้:

an =kn+b ในขณะที่ b และ k เป็นตัวเลขบางตัว

ข้อความที่ตรงกันข้ามเป็นจริงอย่างยิ่ง: หากลำดับได้รับจากสูตรที่คล้ายกัน แสดงว่าเป็นการก้าวหน้าทางคณิตศาสตร์ที่มีคุณสมบัติ:

  1. แต่ละเทอมของการก้าวหน้าคือค่าเฉลี่ยเลขคณิตของเทอมก่อนหน้าและเทอมถัดไป
  2. ในทางกลับกัน: ถ้าเริ่มจากเทอมที่ 2 แต่ละเทอมเป็นค่าเฉลี่ยเลขคณิตของเทอมก่อนหน้าและเทอมถัดมา เช่น ถ้าตรงตามเงื่อนไข ลำดับนี้จะเป็นความก้าวหน้าทางคณิตศาสตร์ ความเท่าเทียมกันนี้ในขณะเดียวกันก็เป็นสัญญาณของความก้าวหน้า ดังนั้นจึงมักเรียกว่าคุณสมบัติเฉพาะของความก้าวหน้า
    ในทำนองเดียวกัน ทฤษฎีบทที่สะท้อนคุณสมบัตินี้เป็นจริง ลำดับคือความก้าวหน้าทางคณิตศาสตร์ก็ต่อเมื่อความเท่าเทียมกันนี้เป็นจริงสำหรับเงื่อนไขใดๆ ของลำดับ โดยเริ่มจากอันดับที่ 2

คุณสมบัติเฉพาะของตัวเลขสี่ตัวใดๆ ของการก้าวหน้าทางคณิตศาสตร์สามารถแสดงได้ด้วยสูตร an + am = ak + al ถ้า n + m = k + l (m, n, k เป็นตัวเลขก้าวหน้า)

ในการก้าวหน้าทางคณิตศาสตร์ คำศัพท์ที่จำเป็น (Nth) สามารถหาได้โดยใช้สูตรต่อไปนี้:

ตัวอย่างเช่น: เทอมแรก (a1) ในการก้าวหน้าทางคณิตศาสตร์จะได้รับและเท่ากับ 3 และผลต่าง (d) เท่ากับ 4 คุณต้องค้นหาระยะที่สี่สิบห้าของความก้าวหน้านี้ a45 = 1+4(45-1)=177

สูตร an = ak + d(n - k) ช่วยให้เราสามารถกำหนดได้ เทอมที่ nความก้าวหน้าทางคณิตศาสตร์ผ่านเทอม k ใดๆ โดยมีเงื่อนไขว่าทราบ

ผลรวมของเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์ (หมายถึงเงื่อนไข n แรกของความก้าวหน้าอันจำกัด) มีการคำนวณดังนี้:

Sn = (a1+อัน) n/2

หากทราบเทอมที่ 1 แสดงว่าสูตรอื่นสะดวกสำหรับการคำนวณ:

Sn = ((2a1+d(n-1))/2)*n

ผลรวมของความก้าวหน้าทางคณิตศาสตร์ที่มีคำศัพท์ n คำคำนวณได้ดังนี้:

การเลือกสูตรในการคำนวณขึ้นอยู่กับเงื่อนไขของปัญหาและข้อมูลเบื้องต้น

อนุกรมธรรมชาติของตัวเลขใดๆ เช่น 1,2,3,...,n,...- ตัวอย่างที่ง่ายที่สุดความก้าวหน้าทางคณิตศาสตร์

นอกจากความก้าวหน้าทางคณิตศาสตร์แล้ว ยังมีความก้าวหน้าทางเรขาคณิตอีกด้วย ซึ่งมีคุณสมบัติและคุณลักษณะเฉพาะของตัวเอง


ตัวอย่างเช่น ลำดับ \(2\); \(5\); \(5\); \(8\); \(8\); \(11\); \(11\); \(14\)... เป็นความก้าวหน้าทางคณิตศาสตร์ เนื่องจากแต่ละองค์ประกอบที่ตามมาจะแตกต่างจากองค์ประกอบก่อนหน้าด้วยสาม (สามารถหาได้จากองค์ประกอบก่อนหน้าโดยการบวกสาม):

ในความก้าวหน้านี้ ผลต่าง \(d\) เป็นบวก (เท่ากับ \(3\)) และดังนั้น แต่ละเทอมถัดไปจึงมากกว่าเทอมก่อนหน้า ความก้าวหน้าดังกล่าวเรียกว่า เพิ่มขึ้น.

อย่างไรก็ตาม \(d\) อาจเป็นจำนวนลบก็ได้ ตัวอย่างเช่นในความก้าวหน้าทางคณิตศาสตร์ \(16\); \(10\); \(10\); \(4\); \(4\); \(-2\); \(-2\); \(-8\)… ผลต่างความก้าวหน้า \(d\) เท่ากับลบ 6

และในกรณีนี้ แต่ละองค์ประกอบถัดไปจะมีขนาดเล็กกว่าองค์ประกอบก่อนหน้า ความก้าวหน้าเหล่านี้เรียกว่า ลดลง.

สัญกรณ์ความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าจะแสดงด้วยอักษรละตินตัวเล็ก

เรียกว่าตัวเลขที่ก่อให้เกิดความก้าวหน้า สมาชิก(หรือองค์ประกอบ)

พวกเขาแสดงด้วยตัวอักษรเดียวกันกับความก้าวหน้าทางคณิตศาสตร์ แต่มีดัชนีตัวเลขเท่ากับจำนวนขององค์ประกอบตามลำดับ

ตัวอย่างเช่น ความก้าวหน้าทางคณิตศาสตร์ \(a_n = \left\( 2; 5; 8; 11; 14...\right\)\) ประกอบด้วยองค์ประกอบ \(a_1=2\); \(a_2=5\); \(a_3=8\) และอื่นๆ

กล่าวอีกนัยหนึ่ง สำหรับความก้าวหน้า \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

การแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์

โดยหลักการแล้ว ข้อมูลที่นำเสนอข้างต้นเพียงพอที่จะแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์ได้เกือบทั้งหมดแล้ว (รวมถึงปัญหาที่นำเสนอที่ OGE ด้วย)

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข \(b_1=7; d=4\) ค้นหา \(b_5\)
สารละลาย:

คำตอบ: \(b_5=23\)

ตัวอย่าง (OGE) ให้สามเทอมแรกของความก้าวหน้าทางคณิตศาสตร์มา: \(62; 49; 36…\) จงหาค่าของเทอมลบแรกของความก้าวหน้านี้..
สารละลาย:

เราได้รับองค์ประกอบแรกของลำดับและรู้ว่ามันคือความก้าวหน้าทางคณิตศาสตร์ นั่นคือแต่ละองค์ประกอบแตกต่างจากเพื่อนบ้านด้วยจำนวนเดียวกัน มาดูกันว่าอันไหนโดยการลบอันก่อนหน้าออกจากองค์ประกอบถัดไป: \(d=49-62=-13\)

ตอนนี้เราสามารถฟื้นฟูความก้าวหน้าของเราไปสู่องค์ประกอบ (ลบแรก) ที่เราต้องการได้

พร้อม. คุณสามารถเขียนคำตอบได้

คำตอบ: \(-3\)

ตัวอย่าง (OGE) เมื่อพิจารณาองค์ประกอบหลายรายการติดต่อกันของการก้าวหน้าทางคณิตศาสตร์: \(…5; x; 10; 12.5...\) ค้นหาค่าขององค์ประกอบที่กำหนดโดยตัวอักษร \(x\)
สารละลาย:


ในการค้นหา \(x\) เราจำเป็นต้องรู้ว่าองค์ประกอบถัดไปแตกต่างจากองค์ประกอบก่อนหน้ามากเพียงใด กล่าวคือ ความแตกต่างของความก้าวหน้า ลองค้นหาจากองค์ประกอบใกล้เคียงสององค์ประกอบที่รู้จัก: \(d=12.5-10=2.5\)

และตอนนี้เราสามารถค้นหาสิ่งที่ต้องการได้อย่างง่ายดาย: \(x=5+2.5=7.5\)


พร้อม. คุณสามารถเขียนคำตอบได้

คำตอบ: \(7,5\).

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไขต่อไปนี้: \(a_1=-11\); \(a_(n+1)=a_n+5\) จงหาผลรวมของหกเทอมแรกของความก้าวหน้านี้
สารละลาย:

เราจำเป็นต้องหาผลรวมของหกเทอมแรกของความก้าวหน้า แต่เราไม่ทราบความหมาย เราได้รับเพียงองค์ประกอบแรกเท่านั้น ดังนั้นเราจึงคำนวณค่าทีละรายการก่อนโดยใช้สิ่งที่มอบให้เรา:

\(n=1\); \(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
และเมื่อคำนวณองค์ประกอบทั้งหกที่เราต้องการแล้ว เราก็จะพบผลรวมของมัน

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

พบจำนวนเงินที่ต้องการแล้ว

คำตอบ: \(S_6=9\).

ตัวอย่าง (OGE) ในการก้าวหน้าทางคณิตศาสตร์ \(a_(12)=23\); \(a_(16)=51\) ค้นหาความแตกต่างของความก้าวหน้านี้
สารละลาย:

คำตอบ: \(ง=7\).

สูตรสำคัญสำหรับการก้าวหน้าทางคณิตศาสตร์

อย่างที่คุณเห็น ปัญหามากมายเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์สามารถแก้ไขได้โดยการทำความเข้าใจสิ่งสำคัญ - ความก้าวหน้าทางคณิตศาสตร์นั้นเป็นสายโซ่ของตัวเลข และแต่ละองค์ประกอบที่ตามมาในสายโซ่นี้ได้มาโดยการเพิ่มหมายเลขเดียวกันเข้ากับองค์ประกอบก่อนหน้า ( ความแตกต่างของความก้าวหน้า)

อย่างไรก็ตาม บางครั้งก็มีสถานการณ์ที่ไม่สะดวกอย่างยิ่งที่จะตัดสินใจ "เผชิญหน้า" ตัวอย่างเช่น ลองนึกภาพว่าในตัวอย่างนี้เราต้องค้นหาไม่ใช่องค์ประกอบที่ห้า \(b_5\) แต่เป็นองค์ประกอบที่สามร้อยแปดสิบหก \(b_(386)\) เราจำเป็นต้องเพิ่ม \(385\) สี่ครั้งหรือไม่? หรือจินตนาการว่าในตัวอย่างสุดท้าย คุณต้องหาผลรวมขององค์ประกอบเจ็ดสิบสามตัวแรก คุณจะเหนื่อยกับการนับ...

ดังนั้นในกรณีเช่นนี้ พวกเขาไม่ได้แก้ปัญหาแบบ "เผชิญหน้า" แต่ใช้สูตรพิเศษที่ได้มาจากความก้าวหน้าทางคณิตศาสตร์ และหลักๆ คือสูตรสำหรับเทอมที่ n ของการก้าวหน้าและสูตรสำหรับผลรวมของ \(n\) เทอมแรก

สูตรของ \(n\) เทอมที่ 3: \(a_n=a_1+(n-1)d\) โดยที่ \(a_1\) คือเทอมแรกของความก้าวหน้า
\(n\) – จำนวนขององค์ประกอบที่ต้องการ;
\(a_n\) – เทอมของความก้าวหน้าที่มีหมายเลข \(n\)


สูตรนี้ช่วยให้เราค้นหาองค์ประกอบที่สามในร้อยหรือล้านได้อย่างรวดเร็ว โดยรู้เฉพาะองค์ประกอบแรกและส่วนต่างของความก้าวหน้า

ตัวอย่าง. ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข: \(b_1=-159\); \(ง=8.2\) ค้นหา \(b_(246)\)
สารละลาย:

คำตอบ: \(b_(246)=1850\)

สูตรสำหรับผลรวมของ n เทอมแรก: \(S_n=\frac(a_1+a_n)(2) \cdot n\) โดยที่



\(a_n\) – คำสรุปสุดท้าย;


ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข \(a_n=3.4n-0.6\) หาผลรวมของพจน์ \(25\) แรกของความก้าวหน้านี้
สารละลาย:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

ในการคำนวณผลรวมของเทอมยี่สิบห้าแรก เราจำเป็นต้องทราบค่าของเทอมแรกและยี่สิบห้า
ความก้าวหน้าของเราได้มาจากสูตรของเทอมที่ n ขึ้นอยู่กับจำนวน (ดูรายละเอียดเพิ่มเติมดู) มาคำนวณองค์ประกอบแรกด้วยการแทนที่องค์ประกอบหนึ่งด้วย \(n\)

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

ทีนี้ ลองหาเทอมที่ยี่สิบห้าโดยการแทนที่ยี่สิบห้าแทน \(n\)

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

ตอนนี้เราสามารถคำนวณจำนวนเงินที่ต้องการได้อย่างง่ายดาย

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

คำตอบพร้อมแล้ว

คำตอบ: \(S_(25)=1,090\)

สำหรับผลรวม \(n\) ของเทอมแรก คุณสามารถได้สูตรอื่น: คุณเพียงแค่ต้อง \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) แทน \(a_n\) แทนที่สูตรของมัน \(a_n=a_1+(n-1)d\) เราได้รับ:

สูตรสำหรับผลรวมของ n พจน์แรก: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\) โดยที่

\(S_n\) – ผลรวมที่ต้องการของ \(n\) องค์ประกอบแรก
\(a_1\) – เทอมแรกที่สรุป;
\(d\) – ความต่างของความก้าวหน้า;
\(n\) – จำนวนองค์ประกอบทั้งหมด

ตัวอย่าง. ค้นหาผลรวมของพจน์ \(33\)-ex แรกของความก้าวหน้าทางคณิตศาสตร์: \(17\); \(15.5\); \(15.5\); \(14\)…
สารละลาย:

คำตอบ: \(S_(33)=-231\)

ปัญหาความก้าวหน้าทางคณิตศาสตร์ที่ซับซ้อนมากขึ้น

ตอนนี้คุณมีข้อมูลทั้งหมดที่จำเป็นในการแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์เกือบทุกอย่างแล้ว มาจบหัวข้อโดยคำนึงถึงปัญหาที่คุณไม่เพียงแต่ต้องใช้สูตรเท่านั้น แต่ยังต้องคิดอีกนิดหน่อย (ในวิชาคณิตศาสตร์สิ่งนี้มีประโยชน์ ☺)

ตัวอย่าง (OGE) หาผลรวมของพจน์ที่เป็นลบของการก้าวหน้า: \(-19.3\); \(-19\); \(-19\); \(-18.7\)…
สารละลาย:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

งานนี้คล้ายกับงานก่อนหน้ามาก เราเริ่มที่จะแก้สิ่งเดียวกัน: ก่อนอื่นเราหา \(d\)

\(d=a_2-a_1=-19-(-19.3)=0.3\)

ตอนนี้ฉันต้องการแทนที่ \(d\) ลงในสูตรของผลรวม... และมีความแตกต่างเล็กๆ น้อยๆ เกิดขึ้น - เราไม่รู้ \(n\) กล่าวอีกนัยหนึ่ง เราไม่รู้ว่าจะต้องเพิ่มคำศัพท์จำนวนเท่าใด จะทราบได้อย่างไร? ลองคิดดู เราจะหยุดเพิ่มองค์ประกอบเมื่อเราไปถึงองค์ประกอบบวกแรก นั่นคือคุณต้องค้นหาจำนวนองค์ประกอบนี้ ยังไง? มาเขียนสูตรสำหรับคำนวณองค์ประกอบใดๆ ของความก้าวหน้าทางคณิตศาสตร์: \(a_n=a_1+(n-1)d\) สำหรับกรณีของเรา

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

เราต้องการให้ \(a_n\) มีค่ามากกว่าศูนย์ เรามาดูกันว่า \(n\) สิ่งนี้จะเกิดอะไรขึ้น

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

เราหารอสมการทั้งสองด้านด้วย \(0.3\)

\(n-1>\)\(\frac(19.3)(0.3)\)

เราโอนลบหนึ่งไม่ลืมเปลี่ยนป้าย

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

มาคำนวณกัน...

\(n>65,333…\)

...และปรากฎว่าองค์ประกอบบวกตัวแรกจะมีตัวเลข \(66\) ดังนั้น ค่าลบสุดท้ายจึงมี \(n=65\) ในกรณีนี้ลองตรวจสอบสิ่งนี้กัน

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

ดังนั้นเราจึงต้องเพิ่มองค์ประกอบแรก \(65\)

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

คำตอบพร้อมแล้ว

คำตอบ: \(S_(65)=-630.5\)

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข: \(a_1=-33\); \(a_(n+1)=a_n+4\) ค้นหาผลรวมจากองค์ประกอบ \(26\)th ถึง \(42\)
สารละลาย:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

ในปัญหานี้ คุณต้องค้นหาผลรวมขององค์ประกอบด้วย แต่ไม่ได้เริ่มจากองค์ประกอบแรก แต่เริ่มจาก \(26\)th สำหรับกรณีเช่นนี้เราไม่มีสูตร จะตัดสินใจอย่างไร?
ง่ายมาก - หากต้องการหาผลรวมจาก \(26\)th ถึง \(42\)th คุณต้องหาผลรวมจาก \(1\)th ถึง \(42\)th ก่อน แล้วจึงลบออก จากนั้นผลรวมตั้งแต่แรกถึง \(25\)th (ดูรูป)


สำหรับความก้าวหน้าของเรา \(a_1=-33\) และความแตกต่าง \(d=4\) (ท้ายที่สุดแล้ว มันคือสี่สิ่งที่เราเพิ่มเข้าไปในองค์ประกอบก่อนหน้าเพื่อค้นหาองค์ประกอบถัดไป) เมื่อรู้เช่นนี้ เราจะหาผลรวมขององค์ประกอบ \(42\)-y ตัวแรกได้

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

ตอนนี้ผลรวมขององค์ประกอบแรก \(25\)

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

และสุดท้าย เราก็คำนวณคำตอบ

\(S=S_(42)-S_(25)=2058-375=1683\)

คำตอบ: \(ส=1683\).

สำหรับการก้าวหน้าทางคณิตศาสตร์ มีสูตรอีกหลายสูตรที่เราไม่ได้พิจารณาในบทความนี้ เนื่องจากมีประโยชน์ในทางปฏิบัติต่ำ อย่างไรก็ตาม คุณสามารถค้นหาได้อย่างง่ายดาย

คำแนะนำ

การก้าวหน้าทางคณิตศาสตร์คือลำดับของรูปแบบ a1, a1+d, a1+2d..., a1+(n-1)d ขั้นตอนที่ d ความก้าวหน้าเห็นได้ชัดว่าคำทั่วไปของระยะที่ n ตามอำเภอใจของเลขคณิต ความก้าวหน้ามีรูปแบบ: An = A1+(n-1)d แล้วได้รู้จักสมาชิกคนหนึ่ง ความก้าวหน้า, สมาชิก ความก้าวหน้าและขั้นตอน ความก้าวหน้าคุณสามารถนั่นคือจำนวนสมาชิกที่มีความก้าวหน้า แน่นอนว่าจะถูกกำหนดโดยสูตร n = (An-A1+d)/d

ตอนนี้เทอมที่ m เป็นที่รู้จักแล้ว ความก้าวหน้าและสมาชิกอีกคน ความก้าวหน้า- n แต่ n เหมือนในกรณีก่อนหน้า แต่เป็นที่รู้กันว่า n และ m ไม่ตรงกัน ความก้าวหน้าสามารถคำนวณได้โดยใช้สูตร: d = (An-Am)/(n-m) จากนั้น n = (อัน-แอม+เอ็มดี)/d

หากทราบผลรวมขององค์ประกอบหลายรายการในสมการทางคณิตศาสตร์ ความก้าวหน้าเช่นเดียวกับตัวแรกและตัวสุดท้ายก็สามารถกำหนดจำนวนองค์ประกอบเหล่านี้ได้เช่นกัน ความก้าวหน้าจะเท่ากับ: S = ((A1+An)/2)n จากนั้น n = 2S/(A1+An) - ชเดนอฟ ความก้าวหน้า- จากข้อเท็จจริงที่ว่า An = A1+(n-1)d สูตรนี้สามารถเขียนใหม่เป็น: n = 2S/(2A1+(n-1)d) จากนี้เราสามารถแสดง n ได้โดยการแก้ สมการกำลังสอง.

ลำดับเลขคณิตคือชุดตัวเลขที่เรียงลำดับกัน ซึ่งสมาชิกแต่ละตัวจะแตกต่างจากลำดับก่อนหน้าด้วยจำนวนที่เท่ากัน ยกเว้นลำดับแรก ค่าคงที่นี้เรียกว่าผลต่างของความก้าวหน้าหรือขั้นตอน และสามารถคำนวณได้จากเงื่อนไขที่ทราบของความก้าวหน้าทางคณิตศาสตร์

คำแนะนำ

หากทราบค่าของเงื่อนไขที่หนึ่งและที่สองหรือคู่อื่น ๆ ที่อยู่ติดกันจากเงื่อนไขของปัญหา ให้คำนวณความแตกต่าง (d) เพียงลบค่าก่อนหน้าออกจากเทอมถัดไป ค่าผลลัพธ์อาจเป็นตัวเลขบวกหรือลบ ขึ้นอยู่กับว่าความก้าวหน้าเพิ่มขึ้นหรือไม่ ในรูปแบบทั่วไป ให้เขียนคำตอบสำหรับคู่ใดๆ (aᵢ และ aᵢ₊₁) ของพจน์ใกล้เคียงของการก้าวหน้าดังนี้: d = aᵢ₊₁ - aᵢ

สำหรับเงื่อนไขคู่หนึ่งของความก้าวหน้าดังกล่าว หนึ่งในนั้นคือเงื่อนไขแรก (a₁) และอีกเงื่อนไขหนึ่งเป็นเงื่อนไขอื่นที่เลือกโดยพลการ คุณสามารถสร้างสูตรสำหรับค้นหาความแตกต่าง (d) ได้ อย่างไรก็ตาม ในกรณีนี้ ต้องทราบหมายเลขซีเรียล (i) ของสมาชิกที่เลือกโดยพลการของลำดับ ในการคำนวณความแตกต่าง ให้บวกทั้งสองตัวเลขแล้วหารผลลัพธ์ที่ได้ด้วยเลขลำดับของคำใดๆ ที่ลดลงหนึ่งคำ ใน มุมมองทั่วไปเขียนสูตรดังนี้: d = (a₁+ aᵢ)/(i-1)

นอกจากสมาชิกตามอำเภอใจของความก้าวหน้าทางคณิตศาสตร์ที่มีเลขลำดับ i แล้ว ยังรู้จักสมาชิกอีกคนที่มีเลขลำดับ u ให้เปลี่ยนสูตรจากขั้นตอนก่อนหน้าตามลำดับ ในกรณีนี้ ความแตกต่าง (d) ของความก้าวหน้าจะเป็นผลรวมของคำศัพท์ทั้งสองนี้หารด้วยความแตกต่างระหว่างกัน หมายเลขซีเรียล: d = (aᵢ+aᵥ)/(i-v)

สูตรในการคำนวณความแตกต่าง (d) จะค่อนข้างซับซ้อนมากขึ้นหากเงื่อนไขของปัญหาให้ค่าของเทอมแรก (a₁) และผลรวม (Sᵢ) ของตัวเลขที่กำหนด (i) ของเทอมแรกของลำดับเลขคณิต เพื่อให้ได้ค่าที่ต้องการ ให้หารผลรวมด้วยจำนวนพจน์ที่ประกอบกัน ลบค่าของตัวเลขตัวแรกในลำดับ และเพิ่มผลลัพธ์เป็นสองเท่า หารค่าผลลัพธ์ด้วยจำนวนเทอมที่รวมกันเป็นผลรวม ลดลงหนึ่ง โดยทั่วไป ให้เขียนสูตรในการคำนวณค่าจำแนกดังนี้: d = 2*(Sᵢ/i-a₁)/(i-1)

ถ้าเป็นจำนวนธรรมชาติทุกจำนวน n จับคู่ จำนวนจริง หนึ่ง แล้วพวกเขาก็บอกว่าได้รับ ลำดับหมายเลข :

1 , 2 , 3 , . . . , หนึ่ง , . . . .

ดังนั้น ลำดับตัวเลขจึงเป็นฟังก์ชันของอาร์กิวเมนต์ธรรมชาติ

ตัวเลข 1 เรียกว่า เทอมแรกของลำดับ , ตัวเลข 2 เทอมที่สองของลำดับ , ตัวเลข 3 ที่สาม และอื่น ๆ ตัวเลข หนึ่ง เรียกว่า เทอมที่ nลำดับ และจำนวนธรรมชาติ nหมายเลขของเขา .

จากสมาชิกสองคนที่อยู่ติดกัน หนึ่ง และ หนึ่ง +1 สมาชิกลำดับ หนึ่ง +1 เรียกว่า ภายหลัง (สัมพันธ์กับ หนึ่ง ) ก หนึ่ง ก่อนหน้า (สัมพันธ์กับ หนึ่ง +1 ).

ในการกำหนดลำดับ คุณต้องระบุวิธีการที่ช่วยให้คุณค้นหาสมาชิกของลำดับด้วยตัวเลขใดก็ได้

บ่อยครั้งมีการระบุลำดับโดยใช้ สูตรเทอมที่ n นั่นคือสูตรที่ช่วยให้คุณกำหนดสมาชิกของลำดับตามหมายเลขของมันได้

ตัวอย่างเช่น,

สูตรสามารถกำหนดลำดับของเลขคี่บวกได้

หนึ่ง= 2ไม่มี 1,

และลำดับการสลับกัน 1 และ -1 - สูตร

n = (-1)n +1 .

สามารถกำหนดลำดับได้ สูตรเกิดซ้ำ, นั่นคือ สูตรที่แสดงสมาชิกใดๆ ของลำดับ โดยเริ่มจากบางส่วน จนถึงสมาชิกก่อนหน้า (หนึ่งตัวหรือมากกว่า)

ตัวอย่างเช่น,

ถ้า 1 = 1 , ก หนึ่ง +1 = หนึ่ง + 5

1 = 1,

2 = 1 + 5 = 1 + 5 = 6,

3 = 2 + 5 = 6 + 5 = 11,

4 = 3 + 5 = 11 + 5 = 16,

5 = 4 + 5 = 16 + 5 = 21.

ถ้า 1= 1, 2 = 1, หนึ่ง +2 = หนึ่ง + หนึ่ง +1 , จากนั้นสมาชิกเจ็ดคนแรก ลำดับหมายเลขติดตั้งดังนี้:

1 = 1,

2 = 1,

3 = 1 + 2 = 1 + 1 = 2,

4 = 2 + 3 = 1 + 2 = 3,

5 = 3 + 4 = 2 + 3 = 5,

6 = 4 + 5 = 3 + 5 = 8,

7 = 5 + 6 = 5 + 8 = 13.

ลำดับได้ สุดท้าย และ ไม่มีที่สิ้นสุด .

ลำดับที่เรียกว่า สุดยอด ถ้ามีสมาชิกจำนวนจำกัด ลำดับที่เรียกว่า ไม่มีที่สิ้นสุด ถ้ามีสมาชิกจำนวนมากอย่างไม่สิ้นสุด

ตัวอย่างเช่น,

ลำดับของจำนวนธรรมชาติสองหลัก:

10, 11, 12, 13, . . . , 98, 99

สุดท้าย.

ลำดับของจำนวนเฉพาะ:

2, 3, 5, 7, 11, 13, . . .

ไม่มีที่สิ้นสุด

ลำดับที่เรียกว่า เพิ่มขึ้น ถ้าสมาชิกแต่ละคนเริ่มตั้งแต่ตัวที่สองมากกว่าสมาชิกก่อนหน้า

ลำดับที่เรียกว่า ลดลง ถ้าสมาชิกแต่ละคนเริ่มตั้งแต่ตัวที่สองน้อยกว่าสมาชิกก่อนหน้า

ตัวอย่างเช่น,

2, 4, 6, 8, . . . , 2n, . . . — ลำดับที่เพิ่มขึ้น;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . - ลำดับที่ลดลง

ลำดับที่องค์ประกอบไม่ลดลงเมื่อจำนวนเพิ่มขึ้น หรือในทางกลับกัน ไม่เพิ่มขึ้น เรียกว่า ลำดับที่ซ้ำซากจำเจ .

โดยเฉพาะอย่างยิ่งลำดับแบบโมโนโทนิกคือลำดับที่เพิ่มขึ้นและลำดับที่ลดลง

ความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์ คือลำดับที่สมาชิกแต่ละตัวเริ่มต้นจากตัวที่สองมีค่าเท่ากับสมาชิกตัวก่อนหน้าซึ่งมีการเพิ่มจำนวนเดียวกันเข้าไป

1 , 2 , 3 , . . . , หนึ่ง, . . .

คือความก้าวหน้าทางคณิตศาสตร์หากมี จำนวนธรรมชาติ n ตรงตามเงื่อนไข:

หนึ่ง +1 = หนึ่ง + ,

ที่ไหน - จำนวนหนึ่ง

ดังนั้น ความแตกต่างระหว่างเงื่อนไขที่ตามมาและเงื่อนไขก่อนหน้าของความก้าวหน้าทางคณิตศาสตร์ที่กำหนดจึงเป็นค่าคงที่เสมอ:

2 - 1 = 3 - 2 = . . . = หนึ่ง +1 - หนึ่ง = .

ตัวเลข เรียกว่า ความแตกต่างของความก้าวหน้าทางคณิตศาสตร์.

เพื่อกำหนดความก้าวหน้าทางคณิตศาสตร์ ก็เพียงพอแล้วที่จะระบุเทอมแรกและผลต่างของมัน

ตัวอย่างเช่น,

ถ้า 1 = 3, = 4 จากนั้นเราจะพบพจน์ห้าคำแรกของลำดับดังนี้:

1 =3,

2 = 1 + = 3 + 4 = 7,

3 = 2 + = 7 + 4 = 11,

4 = 3 + = 11 + 4 = 15,

5 = 4 + = 15 + 4 = 19.

สำหรับความก้าวหน้าทางคณิตศาสตร์กับเทอมแรก 1 และความแตกต่าง ของเธอ n

หนึ่ง = 1 + (n- 1)ง.

ตัวอย่างเช่น,

ค้นหาระยะที่สามสิบของความก้าวหน้าทางคณิตศาสตร์

1, 4, 7, 10, . . .

1 =1, = 3,

30 = 1 + (30 - 1)ง = 1 + 29· 3 = 88.

n-1 = 1 + (n- 2)ง,

หนึ่ง= 1 + (n- 1)ง,

หนึ่ง +1 = 1 + nd,

เห็นได้ชัดว่า

หนึ่ง=
n-1 + n+1
2

สมาชิกแต่ละคนของการก้าวหน้าทางคณิตศาสตร์ เริ่มจากวินาที จะเท่ากับค่าเฉลี่ยเลขคณิตของสมาชิกก่อนหน้าและสมาชิกที่ตามมา

ตัวเลข a, b และ c เป็นพจน์ที่ต่อเนื่องกันของความก้าวหน้าทางคณิตศาสตร์บางอย่าง ถ้าหากหนึ่งในนั้นเท่ากับค่าเฉลี่ยเลขคณิตของอีกสองตัวเท่านั้น

ตัวอย่างเช่น,

หนึ่ง = 2n- 7 เป็นการก้าวหน้าทางคณิตศาสตร์

ลองใช้ข้อความข้างต้น เรามี:

หนึ่ง = 2n- 7,

n-1 = 2(ไม่มี 1) - 7 = 2n- 9,

n+1 = 2(n+ 1) - 7 = 2n- 5.

เพราะฉะนั้น,

n+1 + n-1
=
2n- 5 + 2n- 9
= 2n- 7 = หนึ่ง,
2
2

โปรดทราบว่า n เทอมที่ 3 ของความก้าวหน้าทางคณิตศาสตร์สามารถพบได้ไม่เพียงแต่ผ่านเท่านั้น 1 แต่ยังรวมถึงก่อนหน้านี้ด้วย เค

หนึ่ง = เค + (n- เค).

ตัวอย่างเช่น,

สำหรับ 5 สามารถเขียนลงไปได้

5 = 1 + 4,

5 = 2 + 3,

5 = 3 + 2,

5 = 4 + .

หนึ่ง = ไม่เป็นไร + เคดี,

หนึ่ง = เอ็น+เค - เคดี,

เห็นได้ชัดว่า

หนึ่ง=
นะเค +ก ไม่มี+เค
2

สมาชิกใดๆ ของความก้าวหน้าทางคณิตศาสตร์ โดยเริ่มจากวินาที จะเท่ากับครึ่งหนึ่งของผลรวมของสมาชิกที่มีระยะห่างเท่ากันของความก้าวหน้าทางคณิตศาสตร์นี้

นอกจากนี้ สำหรับความก้าวหน้าทางคณิตศาสตร์ใดๆ จะมีความเท่าเทียมกันดังต่อไปนี้:

a m + a n = a k + a l,

ม. + n = k + ล.

ตัวอย่างเช่น,

ในการก้าวหน้าทางคณิตศาสตร์

1) 10 = 28 = (25 + 31)/2 = ( 9 + 11 )/2;

2) 28 = 10 = 3 + 7= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (ก 7 + 13)/2;

4) 2 + 12 = 5 + 9, เพราะ

ก 2 + 12= 4 + 34 = 38,

5 + 9 = 13 + 25 = 38.

= ก 1 + ก 2 + ก 3 + - -+ หนึ่ง,

อันดับแรก n เงื่อนไขของความก้าวหน้าทางคณิตศาสตร์เท่ากับผลคูณของผลรวมครึ่งหนึ่งของเงื่อนไขสุดขั้วและจำนวนเงื่อนไข:

จากนี้โดยเฉพาะจะตามมาว่าหากคุณต้องการรวมคำศัพท์

เค, เค +1 , . . . , หนึ่ง,

ดังนั้นสูตรก่อนหน้านี้จะคงโครงสร้างไว้:

ตัวอย่างเช่น,

ในการก้าวหน้าทางคณิตศาสตร์ 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = 10 - 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

ถ้าให้ความก้าวหน้าทางคณิตศาสตร์แล้ว ปริมาณ 1 , หนึ่ง, , nและ n เชื่อมต่อกันด้วยสองสูตร:

ดังนั้นหาก ความหมายของสามของปริมาณเหล่านี้จะได้รับจากนั้นค่าที่สอดคล้องกันของปริมาณอีกสองปริมาณจะถูกกำหนดจากสูตรเหล่านี้รวมกันเป็นระบบสองสมการโดยไม่ทราบค่าสองตัว

ความก้าวหน้าทางคณิตศาสตร์เป็นลำดับที่ซ้ำซากจำเจ ในกรณีนี้:

  • ถ้า > 0 แล้วมันก็เพิ่มขึ้น;
  • ถ้า < 0 ก็กำลังลดลง;
  • ถ้า = 0 จากนั้นลำดับก็จะหยุดนิ่ง

ความก้าวหน้าทางเรขาคณิต

ความก้าวหน้าทางเรขาคณิต คือลำดับที่สมาชิกแต่ละตัวเริ่มจากตัวที่สองมีค่าเท่ากับตัวก่อนหน้าคูณด้วยจำนวนเดียวกัน

1 , 2 , 3 , . . . , บีเอ็น, . . .

คือความก้าวหน้าทางเรขาคณิตหากเป็นจำนวนธรรมชาติใดๆ n ตรงตามเงื่อนไข:

บีเอ็น +1 = บีเอ็น · ถาม,

ที่ไหน ถาม ≠ 0 - จำนวนหนึ่ง

ดังนั้น อัตราส่วนของเทอมต่อมาของความก้าวหน้าทางเรขาคณิตที่กำหนดต่อเทอมก่อนหน้าจึงเป็นจำนวนคงที่:

2 / 1 = 3 / 2 = . . . = บีเอ็น +1 / บีเอ็น = ถาม.

ตัวเลข ถาม เรียกว่า ตัวส่วนของความก้าวหน้าทางเรขาคณิต.

ในการกำหนดความก้าวหน้าทางเรขาคณิต การระบุเทอมแรกและตัวส่วนก็เพียงพอแล้ว

ตัวอย่างเช่น,

ถ้า 1 = 1, ถาม = -3 จากนั้นเราจะพบพจน์ห้าคำแรกของลำดับดังนี้:

ข 1 = 1,

ข 2 = ข 1 · ถาม = 1 · (-3) = -3,

ข 3 = ข 2 · ถาม= -3 · (-3) = 9,

ข 4 = ข 3 · ถาม= 9 · (-3) = -27,

5 = 4 · ถาม= -27 · (-3) = 81.

1 และตัวส่วน ถาม ของเธอ n คำที่ 3 สามารถพบได้โดยใช้สูตร:

บีเอ็น = 1 · qn -1 .

ตัวอย่างเช่น,

หาเทอมที่ 7 ของความก้าวหน้าทางเรขาคณิต 1, 2, 4, . . .

1 = 1, ถาม = 2,

7 = 1 · ถาม 6 = 1 2 6 = 64.

บีเอ็น-1 = ข 1 · qn -2 ,

บีเอ็น = ข 1 · qn -1 ,

บีเอ็น +1 = 1 · qn,

เห็นได้ชัดว่า

บีเอ็น 2 = บีเอ็น -1 · บีเอ็น +1 ,

สมาชิกแต่ละคนของความก้าวหน้าทางเรขาคณิต เริ่มต้นจากวินาที เท่ากับค่าเฉลี่ยเรขาคณิต (สัดส่วน) ของสมาชิกก่อนหน้าและสมาชิกต่อๆ ไป

เนื่องจากการสนทนาก็เป็นจริงเช่นกัน ข้อความต่อไปนี้จึงถือเป็น:

ตัวเลข a, b และ c เป็นพจน์ที่ต่อเนื่องกันของความก้าวหน้าทางเรขาคณิต ถ้าหากกำลังสองของหนึ่งในนั้นเท่ากับผลคูณของอีกสองตัว นั่นคือ หนึ่งในตัวเลขนั้นเป็นค่าเฉลี่ยเรขาคณิตของอีกสองตัว

ตัวอย่างเช่น,

ให้เราพิสูจน์ว่าลำดับที่กำหนดโดยสูตร บีเอ็น= -3 2 n คือความก้าวหน้าทางเรขาคณิต ลองใช้ข้อความข้างต้น เรามี:

บีเอ็น= -3 2 n,

บีเอ็น -1 = -3 2 n -1 ,

บีเอ็น +1 = -3 2 n +1 .

เพราะฉะนั้น,

บีเอ็น 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = บีเอ็น -1 · บีเอ็น +1 ,

ซึ่งพิสูจน์ข้อความที่ต้องการ

โปรดทราบว่า n เทอมที่ 3 ของความก้าวหน้าทางเรขาคณิตสามารถพบได้ไม่เพียงแต่ผ่านเท่านั้น 1 แต่ยังรวมถึงสมาชิกคนก่อนหน้าด้วย ซึ่งก็เพียงพอที่จะใช้สูตร

บีเอ็น = · qn - เค.

ตัวอย่างเช่น,

สำหรับ 5 สามารถเขียนลงไปได้

ข 5 = ข 1 · ถาม 4 ,

ข 5 = ข 2 · คำถามที่ 3,

ข 5 = ข 3 · คำถามที่ 2,

ข 5 = ข 4 · ถาม.

บีเอ็น = · qn - เค,

บีเอ็น = บีเอ็น - เค · คิวเค,

เห็นได้ชัดว่า

บีเอ็น 2 = บีเอ็น - เค· บีเอ็น + เค

กำลังสองของเทอมใดๆ ของความก้าวหน้าทางเรขาคณิต โดยเริ่มจากวินาทีนั้น จะเท่ากับผลคูณของเงื่อนไขของความก้าวหน้านี้ซึ่งมีระยะห่างเท่ากัน

นอกจากนี้ สำหรับความก้าวหน้าทางเรขาคณิตใดๆ ความเท่าเทียมกันจะเป็นจริง:

ข ม· บีเอ็น= · ,

+ n= เค+ .

ตัวอย่างเช่น,

ในความก้าวหน้าทางเรขาคณิต

1) 6 2 = 32 2 = 1024 = 16 · 64 = 5 · 7 ;

2) 1024 = 11 = 6 · ถาม 5 = 32 · 2 5 = 1024;

3) 6 2 = 32 2 = 1024 = 8 · 128 = 4 · 8 ;

4) 2 · 7 = 4 · 5 , เพราะ

2 · 7 = 2 · 64 = 128,

4 · 5 = 8 · 16 = 128.

= 1 + 2 + 3 + . . . + บีเอ็น

อันดับแรก n สมาชิกของความก้าวหน้าทางเรขาคณิตที่มีตัวส่วน ถาม 0 คำนวณโดยสูตร:

และเมื่อไร ถาม = 1 - ตามสูตร

= ไม่มี 1

โปรดทราบว่าหากคุณต้องการสรุปข้อกำหนด

, +1 , . . . , บีเอ็น,

จากนั้นจึงใช้สูตร:

- เอสเค -1 = + +1 + . . . + บีเอ็น = · 1 - qn - เค +1
.
1 - ถาม

ตัวอย่างเช่น,

ในความก้าวหน้าทางเรขาคณิต 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = 10 - 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

ถ้าให้ความก้าวหน้าทางเรขาคณิต แสดงว่าปริมาณ 1 , บีเอ็น, ถาม, nและ เชื่อมต่อกันด้วยสองสูตร:

ดังนั้นหากให้ค่าของสามปริมาณใด ๆ เหล่านี้จากนั้นค่าที่สอดคล้องกันของปริมาณอีกสองปริมาณจะถูกกำหนดจากสูตรเหล่านี้รวมกันเป็นระบบสมการสองสมการที่ไม่ทราบค่าสองตัว

สำหรับความก้าวหน้าทางเรขาคณิตกับเทอมแรก 1 และตัวส่วน ถาม สิ่งต่อไปนี้จะเกิดขึ้น คุณสมบัติของความน่าเบื่อ :

  • ความก้าวหน้าจะเพิ่มขึ้นหากตรงตามเงื่อนไขข้อใดข้อหนึ่งต่อไปนี้:

1 > 0 และ ถาม> 1;

1 < 0 และ 0 < ถาม< 1;

  • ความก้าวหน้าจะลดลงหากตรงตามเงื่อนไขข้อใดข้อหนึ่งต่อไปนี้:

1 > 0 และ 0 < ถาม< 1;

1 < 0 และ ถาม> 1.

ถ้า ถาม< 0 จากนั้นความก้าวหน้าทางเรขาคณิตจะสลับกัน: พจน์ที่เป็นเลขคี่จะมีเครื่องหมายเดียวกันกับเทอมแรก และเทอมที่มีเลขคู่จะมีเครื่องหมายตรงกันข้าม เห็นได้ชัดว่าความก้าวหน้าทางเรขาคณิตแบบสลับกันนั้นไม่ใช่เรื่องซ้ำซากจำเจ

สินค้าชิ้นแรก n เงื่อนไขของความก้าวหน้าทางเรขาคณิตสามารถคำนวณได้โดยใช้สูตร:

พี= ข 1 · ข 2 · ข 3 · . . . · บีเอ็น = (ข 1 · บีเอ็น) n / 2 .

ตัวอย่างเช่น,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

ลดความก้าวหน้าทางเรขาคณิตอย่างไม่สิ้นสุด

ลดความก้าวหน้าทางเรขาคณิตอย่างไม่สิ้นสุด เรียกว่าความก้าวหน้าทางเรขาคณิตอนันต์ซึ่งมีโมดูลัสตัวส่วนน้อยกว่า 1 นั่นคือ

|ถาม| < 1 .

โปรดทราบว่าความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุดอาจไม่ใช่ลำดับที่ลดลง มันเหมาะกับโอกาส

1 < ถาม< 0 .

ด้วยตัวส่วนดังกล่าว ลำดับจึงสลับกัน ตัวอย่างเช่น,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

ผลรวมของความก้าวหน้าทางเรขาคณิตที่ลดลงอย่างไม่สิ้นสุด ตั้งชื่อหมายเลขที่ผลรวมของหมายเลขแรกเข้าใกล้โดยไม่มีขีดจำกัด n สมาชิกของความก้าวหน้าโดยเพิ่มจำนวนได้ไม่จำกัด n - จำนวนนี้มีจำกัดเสมอและแสดงเป็นสูตร

= 1 + 2 + 3 + . . . = 1
.
1 - ถาม

ตัวอย่างเช่น,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

ความสัมพันธ์ระหว่างความก้าวหน้าทางคณิตศาสตร์และเรขาคณิต

เลขคณิตและ ความก้าวหน้าทางเรขาคณิตมีความสัมพันธ์กันอย่างใกล้ชิด ลองดูเพียงสองตัวอย่าง

1 , 2 , 3 , . . . , ที่

1 , 2 , 3 , . . . ข d .

ตัวอย่างเช่น,

1, 3, 5, . . . - ความก้าวหน้าทางคณิตศาสตร์ที่มีความแตกต่าง 2 และ

7 1 , 7 3 , 7 5 , . . . - ความก้าวหน้าทางเรขาคณิตพร้อมตัวส่วน 7 2 .

1 , 2 , 3 , . . . - ความก้าวหน้าทางเรขาคณิตพร้อมตัวส่วน ถาม , ที่

เข้าสู่ระบบ ข 1, เข้าสู่ระบบ ข 2, เข้าสู่ระบบ ข 3, . . . - ความก้าวหน้าทางคณิตศาสตร์ที่มีความแตกต่าง เข้าสู่ระบบถาม .

ตัวอย่างเช่น,

2, 12, 72, . . . - ความก้าวหน้าทางเรขาคณิตพร้อมตัวส่วน 6 และ

แอลจี 2, แอลจี 12, แอลจี 72, . . . - ความก้าวหน้าทางคณิตศาสตร์ที่มีความแตกต่าง แอลจี 6 .

ความสนใจ!
มีเพิ่มเติม
วัสดุมาตราพิเศษ 555
สำหรับผู้ที่ "ไม่ค่อย..." มากนัก
และสำหรับผู้ที่ “มากๆ…”)

ความก้าวหน้าทางคณิตศาสตร์คือชุดของตัวเลขซึ่งแต่ละตัวเลขจะมากกว่า (หรือน้อยกว่า) กว่าตัวเลขก่อนหน้าด้วยจำนวนที่เท่ากัน

หัวข้อนี้มักจะดูซับซ้อนและเข้าใจยาก ดัชนีตัวอักษรระยะที่ n ของความก้าวหน้าความแตกต่างของความก้าวหน้า - ทั้งหมดนี้ทำให้เกิดความสับสนใช่... ลองหาความหมายของความก้าวหน้าทางคณิตศาสตร์แล้วทุกอย่างจะดีขึ้นทันที)

แนวคิดเรื่องความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์เป็นแนวคิดที่เรียบง่ายและชัดเจน คุณมีข้อสงสัยหรือไม่? เปล่าประโยชน์) ดูเอาเอง

ฉันจะเขียนชุดตัวเลขที่ยังเขียนไม่เสร็จ:

1, 2, 3, 4, 5, ...

คุณสามารถขยายซีรี่ส์นี้ได้หรือไม่? ต่อไปจะเลขอะไรหลังจากเลขห้า? ทุกคน... เอ่อ... สรุปทุกคนจะรู้ว่าเลข 6, 7, 8, 9 ฯลฯ จะมาตามมา

มาทำให้งานซับซ้อนขึ้น ฉันให้ชุดตัวเลขที่ยังไม่เสร็จแก่คุณ:

2, 5, 8, 11, 14, ...

คุณจะสามารถจับลาย ขยายซีรีส์ และตั้งชื่อได้ ที่เจ็ดหมายเลขแถว?

หากคุณรู้ว่าตัวเลขนี้คือ 20 ยินดีด้วย! ไม่เพียงแต่คุณรู้สึกเท่านั้น ประเด็นสำคัญความก้าวหน้าทางคณิตศาสตร์แต่ยังนำไปใช้ในธุรกิจได้สำเร็จอีกด้วย! หากคุณยังไม่เข้าใจอ่านต่อ

ตอนนี้เรามาแปลประเด็นสำคัญจากความรู้สึกเป็นคณิตศาสตร์กันดีกว่า)

จุดสำคัญประการแรก

ความก้าวหน้าทางคณิตศาสตร์เกี่ยวข้องกับชุดตัวเลขนี่เป็นความสับสนในตอนแรก เราคุ้นเคยกับการแก้สมการ การวาดกราฟ และอื่นๆ... แต่ที่นี่เราขยายอนุกรม หาจำนวนอนุกรม...

ไม่เป็นไร. เพียงแต่ว่าความก้าวหน้าคือการได้รู้จักกับสาขาวิชาคณิตศาสตร์สาขาใหม่เป็นครั้งแรก ส่วนนี้เรียกว่า "ซีรี่ส์" และใช้ได้กับชุดตัวเลขและสำนวนโดยเฉพาะ คุ้นเคยกันดี..)

จุดสำคัญที่สอง

ในการก้าวหน้าทางคณิตศาสตร์ จำนวนใดๆ จะแตกต่างจากจำนวนก่อนหน้า ด้วยจำนวนที่เท่ากัน

ในตัวอย่างแรก ความแตกต่างนี้คือหนึ่ง ไม่ว่าคุณจะเอาเลขอะไรก็ตาม มันมากกว่าเลขก่อนหน้าหนึ่งตัว ในช่วงที่สอง - สาม จำนวนใด ๆ ก็ตามจะมากกว่าจำนวนก่อนหน้าสามเท่า จริงๆ แล้วมันเป็นช่วงเวลานี้เองที่เปิดโอกาสให้เราเข้าใจรูปแบบและคำนวณตัวเลขที่ตามมา

จุดสำคัญประการที่สาม

ช่วงเวลานี้ไม่โดดเด่น ใช่... แต่มันสำคัญมากจริงๆ นี่คือ: แต่ละ หมายเลขความก้าวหน้ายืนอยู่ในที่ของมันมีเลขตัวแรก มีเลขเจ็ด มีเลขสี่สิบห้า ฯลฯ หากคุณผสมพวกมันแบบสุ่ม รูปแบบจะหายไป ความก้าวหน้าทางคณิตศาสตร์ก็จะหายไปเช่นกัน ที่เหลือก็แค่ชุดตัวเลข

นั่นคือประเด็นทั้งหมด

แน่นอนว่าข้อกำหนดและการกำหนดใหม่จะปรากฏในหัวข้อใหม่ คุณจำเป็นต้องรู้จักพวกเขา ไม่เช่นนั้นคุณจะไม่เข้าใจงาน ตัวอย่างเช่น คุณจะต้องตัดสินใจบางอย่างเช่น:

เขียนหกเทอมแรกของความก้าวหน้าทางคณิตศาสตร์ (a n) ถ้า a 2 = 5, d = -2.5

สร้างแรงบันดาลใจใช่ไหม) จดหมาย ดัชนีบางส่วน... และงานนี้ไม่มีอะไรง่ายไปกว่านี้แล้ว คุณเพียงแค่ต้องเข้าใจความหมายของคำศัพท์และการกำหนด ตอนนี้เราจะเชี่ยวชาญเรื่องนี้และกลับสู่ภารกิจอีกครั้ง

ข้อกำหนดและการกำหนด

ความก้าวหน้าทางคณิตศาสตร์คือชุดตัวเลขที่แต่ละหมายเลขมีความแตกต่างจากหมายเลขก่อนหน้า ด้วยจำนวนที่เท่ากัน

ปริมาณนี้เรียกว่า - ลองดูแนวคิดนี้โดยละเอียด

ความแตกต่างความก้าวหน้าทางคณิตศาสตร์

ความแตกต่างความก้าวหน้าทางคณิตศาสตร์คือจำนวนเงินตามจำนวนความก้าวหน้าใดๆ มากกว่าอันก่อนหน้า

หนึ่ง จุดสำคัญ- โปรดใส่ใจกับคำว่า "มากกว่า".ในทางคณิตศาสตร์ หมายความว่าแต่ละหมายเลขความก้าวหน้าเป็น โดยการเพิ่มผลต่างของความก้าวหน้าทางคณิตศาสตร์กับตัวเลขก่อนหน้า

ในการคำนวณสมมติว่า ที่สองคุณต้องมีหมายเลขซีรีส์ อันดับแรกตัวเลข เพิ่มความแตกต่างอย่างมากของความก้าวหน้าทางคณิตศาสตร์ สำหรับการคำนวณ ที่ห้า- ความแตกต่างเป็นสิ่งจำเป็น เพิ่มถึง ที่สี่อืม ฯลฯ

ความแตกต่างความก้าวหน้าทางคณิตศาสตร์อาจจะ เชิงบวก,แล้วแต่ละตัวเลขในชุดก็จะกลายเป็นตัวเลขจริง มากกว่าครั้งก่อนความก้าวหน้านี้เรียกว่า เพิ่มขึ้น.ตัวอย่างเช่น:

8; 13; 18; 23; 28; .....

ที่นี่แต่ละหมายเลขจะได้รับ โดยการเพิ่ม จำนวนบวก, +5 ไปที่อันก่อนหน้า

ความแตกต่างอาจจะเป็น เชิงลบ,แล้วแต่ละหมายเลขในชุดจะเป็น น้อยกว่าครั้งก่อนความก้าวหน้านี้เรียกว่า (คุณจะไม่เชื่อมัน!) ลดลง.

ตัวอย่างเช่น:

8; 3; -2; -7; -12; .....

ที่นี่แต่ละหมายเลขก็ได้รับเช่นกัน โดยการเพิ่มสู่อันก่อนหน้าแต่ได้แล้ว จำนวนลบ, -5.

อย่างไรก็ตาม เมื่อทำงานกับความก้าวหน้า จะมีประโยชน์มากในการกำหนดธรรมชาติของมันทันที ไม่ว่าจะเพิ่มขึ้นหรือลดลงก็ตาม สิ่งนี้ช่วยได้มากในการตัดสินใจ มองเห็นข้อผิดพลาด และแก้ไขก่อนที่จะสายเกินไป

ความแตกต่างความก้าวหน้าทางคณิตศาสตร์มักจะแสดงด้วยตัวอักษร ง.

จะหาได้อย่างไร - ง่ายมาก จำเป็นต้องลบออกจากตัวเลขใดๆ ในชุดข้อมูล ก่อนหน้าตัวเลข. ลบ อย่างไรก็ตาม ผลลัพธ์ของการลบเรียกว่า "ผลต่าง")

ให้เรานิยาม เช่น เพื่อเพิ่มความก้าวหน้าทางคณิตศาสตร์:

2, 5, 8, 11, 14, ...

เราเอาตัวเลขใดๆ ในชุดที่เราต้องการ เช่น 11 มาลบออก หมายเลขก่อนหน้าเหล่านั้น. 8:

นี่คือคำตอบที่ถูกต้อง สำหรับการก้าวหน้าทางคณิตศาสตร์นี้ ความแตกต่างคือสาม

คุณสามารถรับมันได้ หมายเลขความก้าวหน้าใด ๆเพราะ เพื่อความก้าวหน้าโดยเฉพาะ ด-เหมือนเดิมเสมออย่างน้อยก็ที่ต้นแถว อย่างน้อยก็ตรงกลาง อย่างน้อยก็ที่ไหนก็ได้ คุณไม่สามารถรับเฉพาะหมายเลขแรกเท่านั้น เพียงเพราะเลขตัวแรกสุด ไม่มีอันก่อนหน้า)

อีกอย่างก็รู้แบบนั้น. ง=3การค้นหาเลขเจ็ดของการก้าวหน้านี้ทำได้ง่ายมาก ลองบวก 3 เข้ากับเลขห้า - เราได้เลขหก มันจะเป็น 17 ลองบวกสามเข้ากับเลขหก เราจะได้เลขเจ็ด - ยี่สิบ

เรามากำหนดกัน สำหรับความก้าวหน้าทางคณิตศาสตร์จากมากไปหาน้อย:

8; 3; -2; -7; -12; .....

ฉันเตือนคุณว่าต้องพิจารณาโดยไม่คำนึงถึงสัญญาณ จำเป็นจากหมายเลขใด ๆ เอาอันก่อนหน้าออกไปเลือกหมายเลขความก้าวหน้า เช่น -7 หมายเลขก่อนหน้าของเขาคือ -2 แล้ว:

ง = -7 - (-2) = -7 + 2 = -5

ผลต่างของความก้าวหน้าทางคณิตศาสตร์อาจเป็นจำนวนเท่าใดก็ได้: จำนวนเต็ม เศษส่วน จำนวนอตรรกยะ หรือจำนวนใดก็ได้

ข้อกำหนดและการกำหนดอื่น ๆ

แต่ละหมายเลขในชุดเรียกว่า สมาชิกของความก้าวหน้าทางคณิตศาสตร์

สมาชิกแต่ละคนก้าวหน้า มีหมายเลขของตัวเองตัวเลขเป็นไปตามลำดับอย่างเคร่งครัดโดยไม่มีลูกเล่นใดๆ ที่หนึ่ง สอง สาม สี่ ฯลฯ เช่น ในขั้นที่ 2, 5, 8, 11, 14, ... สองคือเทอมแรก ห้าคือเทอมสอง สิบเอ็ดคือเทอมสี่ เข้าใจไหม...) โปรดเข้าใจให้ชัดเจน - ตัวเลขนั้นเองสามารถเป็นอะไรก็ได้ ทั้งหมด เศษส่วน ลบ อะไรก็ได้ แต่ การนับตัวเลข- อย่างเคร่งครัด!

จะเขียนความก้าวหน้าในรูปแบบทั่วไปได้อย่างไร? ไม่มีคำถาม! แต่ละตัวเลขในชุดจะเขียนเป็นตัวอักษร โดยปกติจะใช้ตัวอักษรเพื่อแสดงถึงความก้าวหน้าทางคณิตศาสตร์ - หมายเลขสมาชิกจะแสดงด้วยดัชนีที่มุมขวาล่าง เราเขียนคำศัพท์โดยคั่นด้วยเครื่องหมายจุลภาค (หรืออัฒภาค) เช่นนี้

1, 2, 3, 4, 5, .....

1- นี่คือหมายเลขแรก 3- ที่สาม ฯลฯ ไม่มีอะไรแฟนซี ชุดนี้สามารถเขียนสั้น ๆ ได้ดังนี้: (หนึ่ง).

ความก้าวหน้าเกิดขึ้น มีขอบเขตและไม่มีที่สิ้นสุด

สุดยอดความก้าวหน้ามีจำนวนสมาชิกจำกัด ห้า สามสิบแปด อะไรก็ได้ แต่มันเป็นจำนวนจำกัด

อนันต์ความก้าวหน้า - มีจำนวนสมาชิกไม่สิ้นสุด อย่างที่คุณอาจเดาได้)

คุณสามารถเขียนความคืบหน้าขั้นสุดท้ายผ่านชุดข้อมูลลักษณะนี้ โดยมีทุกพจน์และมีจุดต่อท้าย:

1, 2, 3, 4, 5.

หรือแบบนี้ถ้ามีสมาชิกเยอะ:

1, 2, ... 14, 15

ในรายการสั้น ๆ คุณจะต้องระบุจำนวนสมาชิกเพิ่มเติม ตัวอย่างเช่น (สำหรับสมาชิกยี่สิบคน) ดังนี้:

(น) n = 20

ความก้าวหน้าที่ไม่สิ้นสุดสามารถรับรู้ได้ด้วยจุดไข่ปลาที่ท้ายแถว ดังตัวอย่างในบทเรียนนี้

ตอนนี้คุณสามารถแก้ไขงานได้ งานนั้นเรียบง่าย เพียงเพื่อทำความเข้าใจความหมายของความก้าวหน้าทางคณิตศาสตร์เท่านั้น

ตัวอย่างงานเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์

มาดูรายละเอียดงานที่ให้ไว้ข้างต้นโดยละเอียด:

1. เขียนหกเทอมแรกของความก้าวหน้าทางคณิตศาสตร์ (a n) ถ้า a 2 = 5, d = -2.5

เราแปลงานเป็นภาษาที่เข้าใจได้ มีการก้าวหน้าทางคณิตศาสตร์อย่างไม่สิ้นสุด ทราบความก้าวหน้าหมายเลขที่สอง: ก 2 = 5ทราบความแตกต่างของความก้าวหน้า: ง = -2.5เราจำเป็นต้องค้นหาเทอมที่หนึ่ง สาม สี่ ห้า และหกของความก้าวหน้านี้

เพื่อความชัดเจน ฉันจะเขียนชุดตามเงื่อนไขของปัญหา หกเทอมแรก โดยเทอมที่สองคือห้า:

1, 5, 3, 4, 5, 6,....

3 = 2 +

ทดแทนในการแสดงออก ก 2 = 5และ ง = -2.5- อย่าลืมเกี่ยวกับลบ!

3=5+(-2,5)=5 - 2,5 = 2,5

เทอมที่สามปรากฏออกมา น้อยกว่าสอง- ทุกอย่างมีเหตุผล หากจำนวนมากกว่าครั้งก่อน เชิงลบค่าซึ่งหมายความว่าตัวเลขจะน้อยกว่าตัวเลขก่อนหน้า ความก้าวหน้ากำลังลดลง เอาล่ะ มาพิจารณากัน) เรานับเทอมที่สี่ของซีรีส์ของเรา:

4 = 3 +

4=2,5+(-2,5)=2,5 - 2,5 = 0

5 = 4 +

5=0+(-2,5)= - 2,5

6 = 5 +

6=-2,5+(-2,5)=-2,5 - 2,5 = -5

ดังนั้นจึงคำนวณเงื่อนไขจากข้อที่สามถึงหก ผลลัพธ์ที่ได้คือซีรีส์ต่อไปนี้:

1, 5, 2.5, 0, -2.5, -5, ....

มันยังคงค้นหาเทอมแรก 1ตามวินาทีที่รู้จักกันดี นี่คือก้าวไปอีกทางหนึ่ง ไปทางซ้าย) ดังนั้น ผลต่างของความก้าวหน้าทางคณิตศาสตร์ ไม่ควรเพิ่มเข้าไป 2, ก เอาไป:

1 = 2 -

1=5-(-2,5)=5 + 2,5=7,5

แค่นั้นแหละ. คำตอบที่ได้รับมอบหมาย:

7,5, 5, 2,5, 0, -2,5, -5, ...

ฉันต้องการทราบว่าเราได้แก้ไขงานนี้แล้ว กำเริบทาง. คำที่น่ากลัวนี้หมายถึงเพียงการค้นหาสมาชิกของความก้าวหน้าเท่านั้น ตามหมายเลขก่อนหน้า(ติดกัน)เราจะดูวิธีอื่นๆ ในการทำงานกับความก้าวหน้าด้านล่าง

ข้อสรุปที่สำคัญประการหนึ่งสามารถสรุปได้จากงานง่ายๆ นี้

จดจำ:

ถ้าเรารู้อย่างน้อยหนึ่งเทอมและผลต่างของความก้าวหน้าทางคณิตศาสตร์ เราก็สามารถหาเทอมใดๆ ของความก้าวหน้านี้ได้

คุณจำได้ไหม? ข้อสรุปง่ายๆ นี้ช่วยให้คุณสามารถแก้ไขปัญหาส่วนใหญ่ของหลักสูตรของโรงเรียนในหัวข้อนี้ได้ งานทั้งหมดเกี่ยวข้องกับพารามิเตอร์หลักสามประการ: สมาชิกของความก้าวหน้าทางคณิตศาสตร์ ผลต่างของความก้าวหน้า จำนวนสมาชิกของความก้าวหน้าทั้งหมด.

แน่นอนว่าพีชคณิตก่อนหน้านี้ทั้งหมดจะไม่ถูกยกเลิก) อสมการ สมการ และสิ่งอื่นๆ ติดอยู่กับความก้าวหน้า แต่ ตามความก้าวหน้านั่นเอง- ทุกอย่างหมุนรอบพารามิเตอร์สามตัว

เป็นตัวอย่าง ลองดูงานยอดนิยมบางงานในหัวข้อนี้

2. เขียนความก้าวหน้าทางคณิตศาสตร์อันจำกัดเป็นอนุกรม ถ้า n=5, d = 0.4 และ a 1 = 3.6

ทุกอย่างเรียบง่ายที่นี่ ทุกอย่างได้รับไปแล้ว คุณต้องจำไว้ว่าเงื่อนไขของความก้าวหน้าทางคณิตศาสตร์นั้นถูกนับอย่างไร นับและจดบันทึกไว้ ขอแนะนำว่าอย่าพลาดคำศัพท์ในเงื่อนไขงาน: "สุดท้าย" และ " n=5" เพื่อไม่ให้นับจนหน้าซีดหมด) มีสมาชิกเพียง 5 (ห้า) คนในความก้าวหน้านี้:

2 = 1 + d = 3.6 + 0.4 = 4

3 = 2 + d = 4 + 0.4 = 4.4

4 = 3 + ง = 4.4 + 0.4 = 4.8

5 = 4 + ง = 4.8 + 0.4 = 5.2

ยังคงต้องเขียนคำตอบ:

3,6; 4; 4,4; 4,8; 5,2.

งานอื่น:

3. พิจารณาว่าหมายเลข 7 จะเป็นสมาชิกของการก้าวหน้าทางคณิตศาสตร์ (a n) หรือไม่หาก ก 1 = 4.1; ง = 1.2

อืม... ใครรู้บ้าง? จะตรวจสอบบางสิ่งได้อย่างไร?

ฮาวทู... เขียนความคืบหน้าเป็นซีรีส์แล้วดูว่าจะมีเซเว่นอยู่หรือเปล่า! เรานับ:

ก 2 = ก 1 + ง = 4.1 + 1.2 = 5.3

3 = 2 + d = 5.3 + 1.2 = 6.5

4 = 3 + ง = 6.5 + 1.2 = 7.7

4,1; 5,3; 6,5; 7,7; ...

ตอนนี้เห็นได้อย่างชัดเจนว่าเราอายุแค่เจ็ดขวบ ลื่นไถลผ่านระหว่าง 6.5 ถึง 7.7! เจ็ดไม่รวมอยู่ในชุดตัวเลขของเรา ดังนั้น เจ็ดจะไม่เป็นสมาชิกของการก้าวหน้าที่กำหนด

คำตอบ: ไม่.

นี่คือปัญหาตาม ตัวเลือกที่แท้จริงจีไอเอ:

4. มีการเขียนคำศัพท์ที่ต่อเนื่องกันหลายคำของความก้าวหน้าทางคณิตศาสตร์:

- 15; เอ็กซ์; 9; 6; -

นี่คือซีรีส์ที่เขียนโดยไม่มีจุดสิ้นสุดและจุดเริ่มต้น ไม่มีหมายเลขสมาชิก ไม่มีความแตกต่าง - ไม่เป็นไร. เพื่อแก้ปัญหา แค่เข้าใจความหมายของความก้าวหน้าทางคณิตศาสตร์ก็เพียงพอแล้ว มาดูกันว่าอะไรเป็นไปได้ ที่จะรู้จากซีรีย์นี้เหรอ? พารามิเตอร์หลักสามประการคืออะไร?

หมายเลขสมาชิก? ไม่มีหมายเลขเดียวที่นี่

แต่มีตัวเลขสามตัวและ - โปรดทราบ! - คำ "สม่ำเสมอ"อยู่ในสภาพ ซึ่งหมายความว่าตัวเลขจะเรียงลำดับอย่างเคร่งครัดโดยไม่มีช่องว่าง แถวนี้มีสองคนเหรอ? ใกล้เคียงรู้จักตัวเลขเหรอ? ใช่ ฉันมี! เหล่านี้คือ 9 และ 6 ดังนั้นเราจึงสามารถคำนวณผลต่างของความก้าวหน้าทางคณิตศาสตร์ได้! ลบออกจากหก ก่อนหน้าหมายเลขเช่น เก้า:

เหลือเพียงเรื่องเล็กๆ น้อยๆ เท่านั้น เลขอะไรจะเป็นเลขก่อนหน้าของ X? สิบห้า. ซึ่งหมายความว่า X สามารถหาได้ง่ายโดยการบวกง่ายๆ เพิ่มส่วนต่างของความก้าวหน้าทางคณิตศาสตร์เป็น 15:

แค่นั้นแหละ. คำตอบ: x=12

เราแก้ไขปัญหาต่อไปนี้ด้วยตัวเราเอง หมายเหตุ: ปัญหาเหล่านี้ไม่ได้ขึ้นอยู่กับสูตร เพื่อเข้าใจความหมายของความก้าวหน้าทางคณิตศาสตร์อย่างแท้จริง) เราแค่เขียนชุดตัวเลขและตัวอักษร ดูและคิดออก

5. ค้นหาพจน์บวกแรกของความก้าวหน้าทางคณิตศาสตร์ ถ้า 5 = -3; ง = 1.1

6. เป็นที่รู้กันว่าหมายเลข 5.5 เป็นสมาชิกของการก้าวหน้าทางคณิตศาสตร์ (a n) โดยที่ 1 = 1.6; ง = 1.3 กำหนดหมายเลข n ของสมาชิกนี้

7. เป็นที่ทราบกันว่าในการก้าวหน้าทางคณิตศาสตร์ a 2 = 4; 5 = 15.1 หา 3.

8. มีการเขียนคำศัพท์ที่ต่อเนื่องกันหลายคำของความก้าวหน้าทางคณิตศาสตร์:

- 15.6; เอ็กซ์; 3.4; -

ค้นหาเงื่อนไขของความก้าวหน้าที่ระบุด้วยตัวอักษร x

9. รถไฟเริ่มเคลื่อนตัวจากสถานีโดยเพิ่มความเร็วสม่ำเสมอ 30 เมตรต่อนาที รถไฟในห้านาทีจะมีความเร็วเท่าไร? ให้คำตอบเป็น กม./ชม.

10. เป็นที่รู้กันว่าในการก้าวหน้าทางคณิตศาสตร์ a 2 = 5; 6 = -5 หา 1.

คำตอบ (อยู่ในความระส่ำระสาย): 7.7; 7.5; 9.5; 9; 0.3; 4.

ทุกอย่างได้ผลหรือไม่? อัศจรรย์! คุณสามารถเชี่ยวชาญความก้าวหน้าทางคณิตศาสตร์ได้มากขึ้น ระดับสูงในบทเรียนต่อไปนี้

ทุกอย่างไม่ได้ผลเหรอ? ไม่มีปัญหา. ในมาตราพิเศษ 555 ปัญหาทั้งหมดนี้จะถูกแยกออกทีละส่วน) และแน่นอนว่ามีการอธิบายเทคนิคการปฏิบัติง่ายๆ ที่เน้นวิธีแก้ปัญหาของงานดังกล่าวอย่างชัดเจนในทันที!

อย่างไรก็ตาม ในเกมไขปริศนารถไฟ มีปัญหาสองประการที่ผู้คนมักจะสะดุดล้ม เรื่องหนึ่งเป็นเรื่องของความก้าวหน้าล้วนๆ และเรื่องที่สองเป็นเรื่องทั่วไปสำหรับปัญหาทางคณิตศาสตร์และฟิสิกส์ด้วย นี่คือการแปลมิติจากที่หนึ่งไปยังอีกที่หนึ่ง มันแสดงให้เห็นว่าปัญหาเหล่านี้ควรได้รับการแก้ไขอย่างไร

ในบทเรียนนี้ เราพิจารณาความหมายเบื้องต้นของความก้าวหน้าทางคณิตศาสตร์และตัวแปรหลัก นี่ก็เพียงพอแล้วสำหรับการแก้ปัญหาเกือบทั้งหมดในหัวข้อนี้ เพิ่ม เป็นตัวเลข เขียนเป็นชุด ทุกอย่างจะได้รับการแก้ไข

วิธีใช้นิ้วใช้ได้ผลดีกับชิ้นส่วนที่สั้นมากในแถว ดังตัวอย่างในบทเรียนนี้ หากอนุกรมยาวกว่านี้ การคำนวณก็จะซับซ้อนมากขึ้น ตัวอย่างเช่น หากอยู่ในปัญหา 9 ในคำถาม เราจะแทนที่ "ห้านาที"บน "สามสิบห้านาที"ปัญหาจะยิ่งแย่ลงไปอีก)

และยังมีงานที่มีเนื้อหาเรียบง่าย แต่ไร้สาระในแง่ของการคำนวณเช่น:

มีการกำหนดความก้าวหน้าทางคณิตศาสตร์ (a n) ค้นหา 121 ถ้า 1 =3 และ d=1/6

แล้วเราจะบวก 1/6 หลายๆ ครั้งล่ะ?! ฆ่าตัวตายได้!?

คุณทำได้) หากคุณไม่รู้ สูตรง่ายๆซึ่งช่วยให้คุณแก้ไขงานดังกล่าวได้ภายในไม่กี่นาที สูตรนี้จะอยู่ในบทเรียนถัดไป และปัญหานี้ได้รับการแก้ไขที่นั่น ในหนึ่งนาที)

หากคุณชอบเว็บไซต์นี้...

ฉันมีเว็บไซต์ที่น่าสนใจอีกสองสามแห่งสำหรับคุณ)

คุณสามารถฝึกแก้ตัวอย่างและค้นหาระดับของคุณ การทดสอบด้วยการยืนยันทันที มาเรียนรู้กันเถอะ - ด้วยความสนใจ!)

คุณสามารถทำความคุ้นเคยกับฟังก์ชันและอนุพันธ์ได้

สิ่งตีพิมพ์ในหัวข้อ