ค้นหาพื้นที่ที่ถูกจำกัดโดยฟังก์ชันออนไลน์ คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

อินทิกรัลที่แน่นอน วิธีการคำนวณพื้นที่ของรูป

มาดูการประยุกต์ใช้แคลคูลัสอินทิกรัลกันต่อ ในบทนี้เราจะวิเคราะห์ปัญหาทั่วไปและปัญหาที่พบบ่อยที่สุด - วิธีคำนวณพื้นที่ของรูปเครื่องบินโดยใช้อินทิกรัลจำกัดเขต สุดท้ายนี้ ผู้ที่กำลังมองหาความหมายในคณิตศาสตร์ชั้นสูง ขอให้พวกเขาค้นพบมัน คุณไม่มีทางรู้ เราจะต้องนำมันเข้ามาใกล้ในชีวิตมากขึ้น แปลงกระท่อมฤดูร้อนฟังก์ชันเบื้องต้นและหาพื้นที่โดยใช้อินทิกรัลจำกัดเขต

หากต้องการเชี่ยวชาญเนื้อหาให้สำเร็จ คุณต้อง:

1) ทำความเข้าใจอินทิกรัลไม่ จำกัด อย่างน้อยในระดับกลาง ดังนั้นหุ่นควรทำความคุ้นเคยกับบทเรียนไม่ใช่ก่อน

2) สามารถใช้สูตรของนิวตัน-ไลบ์นิซและคำนวณอินทิกรัลจำกัดเขตได้ คุณสามารถสร้างความสัมพันธ์ฉันมิตรอันอบอุ่นกับอินทิกรัลชี้ขาดได้ในหน้าอินทิกรัลชี้ขาด ตัวอย่างการแก้ปัญหา

ที่จริงแล้ว เพื่อที่จะหาพื้นที่ของรูป คุณไม่จำเป็นต้องมีความรู้เรื่องอินทิกรัลไม่แน่นอนและอินทิกรัลจำกัดมากนัก งาน “คำนวณพื้นที่โดยใช้อินทิกรัลจำกัด” มักจะเกี่ยวข้องกับการสร้างภาพวาดเสมอ ดังนั้นจึงมีอะไรมากกว่านั้นอีกมาก ปัญหาเฉพาะที่จะเป็นความรู้และทักษะในการวาดภาพของคุณ ในเรื่องนี้ การรีเฟรชหน่วยความจำกราฟหลักจะเป็นประโยชน์ ฟังก์ชั่นเบื้องต้นและอย่างน้อยที่สุดก็สามารถสร้างเส้นตรง พาราโบลา และไฮเปอร์โบลาได้ ซึ่งสามารถทำได้ (สำหรับหลายๆ คนก็จำเป็น) โดยใช้ วัสดุวิธีการและบทความเกี่ยวกับการแปลงทางเรขาคณิตของกราฟ

จริงๆ แล้ว ทุกคนคงคุ้นเคยกับภารกิจในการหาพื้นที่โดยใช้อินทิกรัลจำกัดจำนวนตั้งแต่สมัยเรียน และเราจะไม่ไปไกลกว่านั้นมากนัก หลักสูตรของโรงเรียน- บทความนี้อาจไม่มีอยู่เลย แต่ความจริงก็คือปัญหาเกิดขึ้นใน 99 กรณีจาก 100 กรณี เมื่อนักเรียนคนหนึ่งต้องทนทุกข์ทรมานจากโรงเรียนที่เกลียดชังและเชี่ยวชาญหลักสูตรคณิตศาสตร์ระดับสูงอย่างกระตือรือร้น

เนื้อหาในการประชุมเชิงปฏิบัติการนี้นำเสนออย่างเรียบง่าย มีรายละเอียด และมีทฤษฎีขั้นต่ำ

เริ่มจากสี่เหลี่ยมคางหมูโค้งกันก่อน

สี่เหลี่ยมคางหมูโค้งคือรูปทรงแบนที่ล้อมรอบด้วยแกน เส้นตรง และกราฟของฟังก์ชันที่ต่อเนื่องกันบนส่วนที่ไม่เปลี่ยนเครื่องหมายในช่วงเวลานี้ ให้รูปนี้ตั้งอยู่ ไม่ต่ำกว่าแกน x:

จากนั้นพื้นที่ของสี่เหลี่ยมคางหมูโค้งจะเท่ากับตัวเลขกับอินทิกรัลจำกัดเขต อินทิกรัลจำกัดจำนวนใดๆ (ที่มีอยู่) มีความหมายทางเรขาคณิตที่ดีมาก ในบทเรียนปริพันธ์กำหนด ตัวอย่างวิธีแก้ปัญหา ผมบอกว่าอินทิกรัลจำกัดจำนวนคือตัวเลข และตอนนี้ก็ถึงเวลาที่จะกล่าวถึงข้อเท็จจริงที่เป็นประโยชน์อีกประการหนึ่ง จากมุมมองของเรขาคณิต อินทิกรัลจำกัดเขตคือ AREA

นั่นคืออินทิกรัลบางอย่าง (ถ้ามี) สอดคล้องกับพื้นที่ของรูปหนึ่งทางเรขาคณิต ตัวอย่างเช่น พิจารณาอินทิกรัลจำกัดเขต อินทิกรัลกำหนดเส้นโค้งบนระนาบที่อยู่เหนือแกน (ผู้ที่ต้องการวาดภาพได้) และอินทิกรัลที่แน่นอนนั้นมีตัวเลขเท่ากับพื้นที่ของสี่เหลี่ยมคางหมูโค้งที่สอดคล้องกัน

ตัวอย่างที่ 1

นี่คือคำสั่งมอบหมายงานทั่วไป จุดแรกและสำคัญที่สุดในการตัดสินใจคือการวาด นอกจากนี้ภาพวาดจะต้องถูกสร้างขึ้นอย่างถูกต้อง

เมื่อสร้างภาพวาด ฉันขอแนะนำลำดับต่อไปนี้ อันดับแรก ควรสร้างเส้นตรงทั้งหมด (ถ้ามี) จะดีกว่า จากนั้นจึงสร้างพาราโบลา ไฮเปอร์โบลา และกราฟของฟังก์ชันอื่นๆ เท่านั้น การสร้างกราฟของฟังก์ชันตามจุดจะให้ผลกำไรมากกว่า เทคนิคการสร้างกราฟตามจุดสามารถพบได้ในกราฟวัสดุอ้างอิงและคุณสมบัติของฟังก์ชันพื้นฐาน ที่นั่นคุณยังสามารถค้นหาสื่อที่มีประโยชน์มากสำหรับบทเรียนของเรา - วิธีสร้างพาราโบลาอย่างรวดเร็ว

ในปัญหานี้ วิธีแก้ไขอาจมีลักษณะเช่นนี้
มาวาดรูปกัน (โปรดทราบว่าสมการกำหนดแกน):


ฉันจะไม่แรเงาสี่เหลี่ยมคางหมูโค้ง เห็นได้ชัดว่าเรากำลังพูดถึงบริเวณใด การแก้ปัญหายังคงดำเนินต่อไปเช่นนี้:

ในส่วนนั้น กราฟของฟังก์ชันจะอยู่เหนือแกน ดังนั้น:

คำตอบ:

ใครมีปัญหาในการคำนวณอินทิกรัลจำกัดเขตและประยุกต์สูตรนิวตัน-ไลบ์นิซ โปรดดูการบรรยาย Definite Integral ตัวอย่างการแก้ปัญหา

หลังจากงานเสร็จสิ้น จะเป็นประโยชน์เสมอที่จะดูภาพวาดและพิจารณาว่าคำตอบนั้นเป็นเรื่องจริงหรือไม่ ใน ในกรณีนี้“ ด้วยตา” เรานับจำนวนเซลล์ในภาพวาด - จะมีประมาณ 9 ดูเหมือนว่าจะเป็นจริง ชัดเจนอย่างยิ่งว่าหากเราได้รับคำตอบ: 20 ตารางหน่วยก็เห็นได้ชัดว่ามีข้อผิดพลาดเกิดขึ้นที่ไหนสักแห่ง - เห็นได้ชัดว่า 20 เซลล์ไม่พอดีกับตัวเลขที่เป็นปัญหา อย่างน้อยที่สุดก็หนึ่งโหล หากคำตอบเป็นลบ แสดงว่างานนั้นได้รับการแก้ไขอย่างไม่ถูกต้องเช่นกัน

ตัวอย่างที่ 2

คำนวณพื้นที่ของรูป จำกัดด้วยเส้น, , และแกน

นี่เป็นตัวอย่างสำหรับ การตัดสินใจที่เป็นอิสระ- เฉลยเต็มและเฉลยท้ายบทเรียน

จะทำอย่างไรถ้ามีสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกน?

ตัวอย่างที่ 3

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้นและพิกัดแกน

วิธีแก้ปัญหา: มาวาดรูปกันเถอะ:

หากสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกน (หรืออย่างน้อย ไม่สูงกว่าแกนที่กำหนด) จากนั้นสามารถหาพื้นที่ได้โดยใช้สูตร:
ในกรณีนี้:

ความสนใจ! ไม่ควรสับสนงานทั้งสองประเภท:

1) หากคุณถูกขอให้แก้แค่อินทิกรัลจำกัดจำนวนโดยไม่มีความหมายทางเรขาคณิต ค่านั้นอาจเป็นค่าลบ

2) หากคุณถูกขอให้ค้นหาพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดเขต พื้นที่นั้นจะเป็นบวกเสมอ! นั่นคือสาเหตุที่เครื่องหมายลบปรากฏในสูตรที่เพิ่งกล่าวถึง

ในทางปฏิบัติ ตัวเลขส่วนใหญ่มักจะอยู่ในระนาบครึ่งบนและล่าง ดังนั้น จากปัญหาที่ง่ายที่สุดของโรงเรียน เราจึงไปยังตัวอย่างที่มีความหมายมากขึ้น

ตัวอย่างที่ 4

หาพื้นที่ของรูปเครื่องบินที่ล้อมรอบด้วยเส้น , .

วิธีแก้ปัญหา: ก่อนอื่นคุณต้องวาดรูป โดยทั่วไปแล้ว เมื่อสร้างภาพวาดในปัญหาพื้นที่ เราจะสนใจจุดตัดกันของเส้นมากที่สุด ลองหาจุดตัดของพาราโบลากับเส้นตรงกัน ซึ่งสามารถทำได้สองวิธี วิธีแรกคือการวิเคราะห์ เราแก้สมการ:

ซึ่งหมายความว่าขีดจำกัดล่างของการรวมคือ ขีดจำกัดบนของการรวมคือ
จะดีกว่าถ้าเป็นไปได้อย่าใช้วิธีนี้

การสร้างบรรทัดทีละจุดจะทำกำไรได้มากกว่าและรวดเร็วกว่ามาก และขีดจำกัดของการรวมระบบก็ชัดเจน "ด้วยตัวเอง" เทคนิคการสร้างกราฟแบบ pointwise สำหรับกราฟต่างๆ จะมีการกล่าวถึงโดยละเอียดใน Help Graph และคุณสมบัติของฟังก์ชันพื้นฐาน อย่างไรก็ตาม บางครั้งยังต้องใช้วิธีการวิเคราะห์ในการค้นหาขีดจำกัด ตัวอย่างเช่น กราฟมีขนาดใหญ่เพียงพอ หรือโครงสร้างโดยละเอียดไม่ได้เปิดเผยขีดจำกัดของการอินทิเกรต (อาจเป็นแบบเศษส่วนหรือไม่มีเหตุผล) และเราจะพิจารณาตัวอย่างดังกล่าวด้วย

กลับมาที่งานของเราดีกว่า การสร้างเส้นตรงก่อนแล้วจึงสร้างพาราโบลาจะมีเหตุผลมากกว่า มาวาดรูปกันเถอะ:

ฉันขอย้ำอีกครั้งว่าเมื่อสร้างตามจุด ขีดจำกัดของการบูรณาการมักจะถูกค้นพบ "โดยอัตโนมัติ"

และตอนนี้สูตรการทำงาน: หากบนเซ็กเมนต์มีฟังก์ชันต่อเนื่องมากกว่าหรือเท่ากับบางส่วน ฟังก์ชั่นต่อเนื่องจากนั้นพื้นที่ของรูปที่จำกัดด้วยกราฟของฟังก์ชันเหล่านี้และเส้น , สามารถพบได้โดยใช้สูตร:

ที่นี่คุณไม่จำเป็นต้องคิดว่ารูปนั้นอยู่ที่ตำแหน่งใดอีกต่อไป - เหนือแกนหรือใต้แกน และพูดโดยคร่าวๆ สิ่งสำคัญคือกราฟใดสูงกว่า (สัมพันธ์กับกราฟอื่น) และกราฟใดอยู่ต่ำกว่า

ในตัวอย่างที่กำลังพิจารณา เห็นได้ชัดว่าพาราโบลาอยู่เหนือเส้นตรงบนส่วน ดังนั้น จึงจำเป็นต้องลบออกจาก

โซลูชันที่สมบูรณ์อาจมีลักษณะดังนี้:

รูปที่ต้องการถูกจำกัดด้วยพาราโบลาด้านบนและเส้นตรงด้านล่าง
ในส่วนตามสูตรที่เกี่ยวข้อง:

คำตอบ:

ที่จริงแล้ว สูตรของโรงเรียนสำหรับพื้นที่ของสี่เหลี่ยมคางหมูโค้งในระนาบครึ่งล่าง (ดูตัวอย่างง่ายๆ หมายเลข 3) คือ กรณีพิเศษสูตร - เนื่องจากสมการระบุแกนและกราฟของฟังก์ชันจึงอยู่ ไม่สูงกว่าขวานแล้ว

และตอนนี้มีตัวอย่างบางส่วนสำหรับโซลูชันของคุณเอง

ตัวอย่างที่ 5

ตัวอย่างที่ 6

หาพื้นที่ของภาพที่ล้อมรอบด้วยเส้น , .

เมื่อแก้ไขปัญหาที่เกี่ยวข้องกับการคำนวณพื้นที่โดยใช้อินทิกรัลจำกัดเขต บางครั้งเหตุการณ์ตลกๆ ก็เกิดขึ้น การวาดภาพทำอย่างถูกต้อง การคำนวณถูกต้อง แต่เนื่องจากความประมาท... พบพื้นที่ของร่างที่ไม่ถูกต้อง นี่คือสิ่งที่ผู้รับใช้ผู้ต่ำต้อยของคุณผิดพลาดหลายครั้ง ที่นี่ กรณีจริงจากชีวิต:

ตัวอย่างที่ 7

คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น , , , .

วิธีแก้ไข: ก่อนอื่น มาวาดรูปกันก่อน:

...เอ๊ะ ภาพวาดออกมาห่วย แต่ทุกอย่างดูเหมือนจะอ่านออก

ร่างที่เราต้องหาพื้นที่นั้นแรเงาด้วยสีน้ำเงิน (ดูสภาพอย่างละเอียด - ร่างนั้นมีจำนวนจำกัดแค่ไหน!) แต่ในทางปฏิบัติเนื่องจากการไม่ตั้งใจมักมี "ข้อผิดพลาด" เกิดขึ้นโดยคุณต้องค้นหาพื้นที่ของร่างที่เป็นสีเทา สีเขียว!

ตัวอย่างนี้ยังมีประโยชน์ในการคำนวณพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดจำนวนสองตัว จริงหรือ:

1) บนส่วนที่อยู่เหนือแกนจะมีกราฟเป็นเส้นตรง

2) บนส่วนที่อยู่เหนือแกนจะมีกราฟของไฮเปอร์โบลา

เห็นได้ชัดว่าสามารถ (และควร) เพิ่มพื้นที่ได้ ดังนั้น:

คำตอบ:

เรามาดูงานที่มีความหมายอื่นกันดีกว่า

ตัวอย่างที่ 8

คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น
นำเสนอสมการในรูปแบบ "โรงเรียน" และวาดภาพแบบจุดต่อจุด:

จากรูปวาดชัดเจนว่าขีดจำกัดบนของเรานั้น “ดี”: .
แต่ขีดจำกัดล่างคืออะไรล่ะ! เห็นได้ชัดว่านี่ไม่ใช่จำนวนเต็ม แต่คืออะไร? อาจจะ ? แต่ที่รับประกันว่าการวาดแบบจะแม่นยำสมบูรณ์แบบกลับกลายเป็นว่า... หรือราก. จะเกิดอะไรขึ้นถ้าเราสร้างกราฟไม่ถูกต้อง?

ในกรณีเช่นนี้ คุณต้องใช้เวลาเพิ่มเติมและชี้แจงขีดจำกัดของการผสานรวมเชิงวิเคราะห์

ลองหาจุดตัดของเส้นตรงและพาราโบลากัน
เมื่อต้องการทำเช่นนี้ เราจะแก้สมการ:


,

จริงหรือ, .

วิธีแก้ปัญหาเพิ่มเติมนั้นไม่สำคัญ สิ่งสำคัญคืออย่าสับสนในการทดแทนและเครื่องหมาย การคำนวณที่นี่ไม่ใช่วิธีที่ง่ายที่สุด

บนส่วน ตามสูตรที่สอดคล้องกัน:

คำตอบ:

เพื่อสรุปบทเรียน เรามาดูงานที่ยากอีกสองงานกัน

ตัวอย่างที่ 9

คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น , ,

วิธีแก้ไข: ลองพรรณนารูปนี้ในภาพวาด

ให้ตายเถอะ ฉันลืมเซ็นกำหนดการ และขอโทษด้วย ฉันไม่ต้องการทำภาพซ้ำ ไม่ใช่วันจับฉลาก สรุปคือ วันนี้คือวัน =)

สำหรับการก่อสร้างแบบจุดต่อจุดคุณจำเป็นต้องรู้ รูปร่างไซนัสอยด์ (และโดยทั่วไปแล้วการรู้กราฟของฟังก์ชันพื้นฐานทั้งหมดจะมีประโยชน์) รวมถึงค่าไซน์บางส่วนซึ่งสามารถพบได้ในตารางตรีโกณมิติ ในบางกรณี (เช่นในกรณีนี้) เป็นไปได้ที่จะสร้างแผนผังซึ่งควรแสดงกราฟและขีดจำกัดของการรวมอย่างถูกต้องโดยพื้นฐาน

ไม่มีปัญหากับข้อจำกัดของการรวมที่นี่ ซึ่งเป็นไปตามเงื่อนไขโดยตรง: "x" เปลี่ยนจากศูนย์เป็น "pi" มาตัดสินใจเพิ่มเติมกัน:

ในส่วนนั้น กราฟของฟังก์ชันจะอยู่เหนือแกน ดังนั้น:

จะแทรกสูตรทางคณิตศาสตร์บนเว็บไซต์ได้อย่างไร?

หากคุณต้องการเพิ่มสูตรทางคณิตศาสตร์หนึ่งหรือสองสูตรลงในหน้าเว็บวิธีที่ง่ายที่สุดในการทำเช่นนี้คือตามที่อธิบายไว้ในบทความ: สูตรทางคณิตศาสตร์จะถูกแทรกลงบนไซต์ได้อย่างง่ายดายในรูปแบบของรูปภาพที่สร้างโดย Wolfram Alpha โดยอัตโนมัติ . นอกจากความเรียบง่ายแล้วสิ่งนี้ วิธีการสากลจะช่วยปรับปรุงการมองเห็นไซต์ในเครื่องมือค้นหา มันใช้งานได้มาเป็นเวลานาน (และฉันคิดว่าจะใช้ได้ตลอดไป) แต่ก็ล้าสมัยไปแล้ว

หากคุณใช้สูตรทางคณิตศาสตร์บนไซต์ของคุณเป็นประจำ ฉันขอแนะนำให้คุณใช้ MathJax ซึ่งเป็นไลบรารี JavaScript พิเศษที่แสดงสัญลักษณ์ทางคณิตศาสตร์ในเว็บเบราว์เซอร์โดยใช้มาร์กอัป MathML, LaTeX หรือ ASCIIMathML

มีสองวิธีในการเริ่มต้นใช้งาน MathJax: (1) การใช้ รหัสง่ายๆคุณสามารถเชื่อมต่อสคริปต์ MathJax กับไซต์ของคุณได้อย่างรวดเร็ว ซึ่งจะอยู่ในนั้น ช่วงเวลาที่เหมาะสมโหลดโดยอัตโนมัติจากเซิร์ฟเวอร์ระยะไกล (รายการเซิร์ฟเวอร์) (2) ดาวน์โหลดสคริปต์ MathJax จากเซิร์ฟเวอร์ระยะไกลไปยังเซิร์ฟเวอร์ของคุณและเชื่อมต่อกับทุกหน้าในเว็บไซต์ของคุณ วิธีที่สอง - ซับซ้อนกว่าและใช้เวลานาน - จะทำให้การโหลดหน้าเว็บไซต์ของคุณเร็วขึ้น และหากเซิร์ฟเวอร์ MathJax หลักไม่สามารถใช้งานได้ชั่วคราวด้วยเหตุผลบางประการ สิ่งนี้จะไม่ส่งผลกระทบต่อไซต์ของคุณในทางใดทางหนึ่ง แม้จะมีข้อดีเหล่านี้ แต่ฉันเลือกวิธีแรกเนื่องจากง่ายกว่า เร็วกว่า และไม่ต้องใช้ทักษะทางเทคนิค ทำตามตัวอย่างของฉัน และในเวลาเพียง 5 นาที คุณจะสามารถใช้ฟีเจอร์ทั้งหมดของ MathJax บนไซต์ของคุณได้

คุณสามารถเชื่อมต่อสคริปต์ไลบรารี MathJax จากเซิร์ฟเวอร์ระยะไกลได้โดยใช้ตัวเลือกโค้ดสองตัวที่นำมาจากเว็บไซต์หลักของ MathJax หรือบนหน้าเอกสารประกอบ:

หนึ่งในตัวเลือกโค้ดเหล่านี้จำเป็นต้องคัดลอกและวางลงในโค้ดของหน้าเว็บของคุณ โดยควรอยู่ระหว่างแท็กและหรืออยู่หลังแท็ก ตามตัวเลือกแรก MathJax จะโหลดเร็วขึ้นและทำให้หน้าช้าลงน้อยลง แต่ตัวเลือกที่สองจะตรวจสอบและโหลด MathJax เวอร์ชันล่าสุดโดยอัตโนมัติ หากคุณใส่รหัสแรก จะต้องได้รับการอัปเดตเป็นระยะ หากคุณใส่โค้ดที่สอง หน้าเว็บจะโหลดช้าลง แต่คุณไม่จำเป็นต้องติดตามการอัปเดต MathJax อย่างต่อเนื่อง

วิธีที่ง่ายที่สุดในการเชื่อมต่อ MathJax คือใน Blogger หรือ WordPress: ในแผงควบคุมไซต์ ให้เพิ่มวิดเจ็ตที่ออกแบบมาเพื่อแทรกโค้ด JavaScript บุคคลที่สาม คัดลอกโค้ดดาวน์โหลดเวอร์ชันแรกหรือเวอร์ชันที่สองที่แสดงด้านบนลงไป และวางวิดเจ็ตไว้ใกล้ยิ่งขึ้น ไปที่จุดเริ่มต้นของเทมเพลต (โดยวิธีนี้ไม่จำเป็นเลย เนื่องจากสคริปต์ MathJax ถูกโหลดแบบอะซิงโครนัส) แค่นั้นแหละ. ตอนนี้เรียนรู้ไวยากรณ์มาร์กอัปของ MathML, LaTeX และ ASCIIMathML แล้วคุณก็พร้อมที่จะแทรกสูตรทางคณิตศาสตร์ลงในหน้าเว็บของเว็บไซต์ของคุณแล้ว

แฟร็กทัลใดๆ ก็ตามจะถูกสร้างขึ้นตามกฎเกณฑ์หนึ่ง ซึ่งใช้อย่างสม่ำเสมอโดยไม่จำกัดจำนวนครั้ง แต่ละครั้งดังกล่าวเรียกว่าการวนซ้ำ

อัลกอริธึมการวนซ้ำสำหรับการสร้างฟองน้ำ Menger นั้นค่อนข้างง่าย: ลูกบาศก์ดั้งเดิมที่มีด้าน 1 จะถูกแบ่งด้วยระนาบที่ขนานกับใบหน้าออกเป็น 27 ลูกบาศก์เท่า ๆ กัน ลูกบาศก์กลางหนึ่งลูกบาศก์และลูกบาศก์ 6 ก้อนที่อยู่ติดกันตามใบหน้าจะถูกลบออกจากมัน ผลลัพธ์ที่ได้คือชุดที่ประกอบด้วยลูกบาศก์ขนาดเล็กกว่า 20 ลูกบาศก์ที่เหลือ เมื่อทำเช่นเดียวกันกับแต่ละลูกบาศก์ เราจะได้ชุดที่ประกอบด้วยลูกบาศก์ขนาดเล็กกว่า 400 ลูกบาศก์ ดำเนินกระบวนการนี้ต่อไปอย่างไม่สิ้นสุดเราจะได้ฟองน้ำ Menger

ในบทความนี้คุณจะได้เรียนรู้วิธีค้นหาพื้นที่ของรูปที่ล้อมรอบด้วยเส้นโดยใช้การคำนวณอินทิกรัล เป็นครั้งแรกที่เราเผชิญกับการกำหนดปัญหาดังกล่าวในโรงเรียนมัธยมปลาย เมื่อเราเพิ่งเสร็จสิ้นการศึกษาอินทิกรัลจำกัดขอบเขต และถึงเวลาที่จะเริ่มการตีความทางเรขาคณิตของความรู้ที่ได้รับในทางปฏิบัติ

ดังนั้นสิ่งที่จำเป็นในการแก้ปัญหาการค้นหาพื้นที่ของรูปโดยใช้อินทิกรัล:

  • ความสามารถในการเขียนแบบที่มีความสามารถ
  • ความสามารถในการแก้อินทิกรัลจำกัดจำนวนโดยใช้สูตรนิวตัน-ไลบ์นิซที่รู้จักกันดี
  • ความสามารถในการ "เห็น" ตัวเลือกโซลูชันที่ให้ผลกำไรมากขึ้น - เช่น เข้าใจว่าการดำเนินการบูรณาการในกรณีใดกรณีหนึ่งจะสะดวกกว่าอย่างไร ตามแนวแกน x (OX) หรือแกน y (OY)?
  • แล้วเราจะอยู่ที่ไหนถ้าไม่มีการคำนวณที่ถูกต้อง?) ซึ่งรวมถึงการทำความเข้าใจวิธีแก้อินทิกรัลประเภทอื่นและการคำนวณตัวเลขที่ถูกต้อง

อัลกอริทึมในการแก้ปัญหาการคำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น:

1. เราสร้างภาพวาด ขอแนะนำให้ทำเช่นนี้บนกระดาษตาหมากรุกในขนาดใหญ่ เราเซ็นชื่อของฟังก์ชันนี้ด้วยดินสอเหนือแต่ละกราฟ การลงนามกราฟจะทำเพื่อความสะดวกในการคำนวณเพิ่มเติมเท่านั้น เมื่อได้รับกราฟของตัวเลขที่ต้องการแล้ว ในกรณีส่วนใหญ่จะชัดเจนทันทีว่าจะใช้ขีดจำกัดการรวมแบบใด ดังนั้นเราจึงแก้ปัญหาแบบกราฟิก อย่างไรก็ตาม มันเกิดขึ้นที่ค่าของขีดจำกัดนั้นเป็นเศษส่วนหรือไม่มีเหตุผล ดังนั้นคุณสามารถคำนวณเพิ่มเติมได้ โดยไปที่ขั้นตอนที่สอง

2. หากไม่ได้ระบุขีดจำกัดของการอินทิเกรตอย่างชัดเจน เราจะค้นหาจุดตัดกันของกราฟด้วยกัน และดูว่าโซลูชันกราฟิกของเราเกิดขึ้นพร้อมกับการวิเคราะห์หรือไม่

3. ถัดไปคุณต้องวิเคราะห์ภาพวาด ขึ้นอยู่กับวิธีการจัดเรียงกราฟฟังก์ชัน แนวทางที่แตกต่างกันเพื่อหาพื้นที่ของรูป ลองพิจารณาดู ตัวอย่างที่แตกต่างกันในการหาพื้นที่ของรูปโดยใช้อินทิกรัล

3.1.

ปัญหาที่คลาสสิกและง่ายที่สุดคือเมื่อคุณต้องการหาพื้นที่ของสี่เหลี่ยมคางหมูโค้ง สี่เหลี่ยมคางหมูโค้งคืออะไร? นี่คือรูปแบนที่ถูกจำกัดด้วยแกน x (y = 0), เส้นตรง x = a, x = b และเส้นโค้งใดๆ ที่ต่อเนื่องกันในช่วงจาก a ถึง b นอกจากนี้ ตัวเลขนี้ไม่เป็นลบและไม่ต่ำกว่าแกน x ในกรณีนี้พื้นที่ของสี่เหลี่ยมคางหมูโค้งเป็นตัวเลขเท่ากับอินทิกรัลที่แน่นอนซึ่งคำนวณโดยใช้สูตรของนิวตัน-ไลบ์นิซ:ตัวอย่างที่ 1

รูปนี้ล้อมรอบด้วยเส้นอะไร? เรามีพาราโบลา y = x2 - 3x + 3 ซึ่งอยู่เหนือแกน OX ไม่เป็นลบเพราะว่า ทุกจุดของพาราโบลานี้มี ค่าบวก- ถัดไป ให้เส้นตรง x = 1 และ x = 3 ซึ่งขนานกับแกนของ op-amp และเป็นเส้นขอบเขตของรูปด้านซ้ายและขวา y = 0 ซึ่งก็คือแกน x เช่นกัน ซึ่งจำกัดตัวเลขจากด้านล่าง รูปที่ได้ออกมาจะเป็นสีเทา ดังที่เห็นได้จากรูปทางด้านซ้าย ในกรณีนี้ คุณสามารถเริ่มแก้ไขปัญหาได้ทันที ตรงหน้าเราเป็นตัวอย่างง่ายๆ ของสี่เหลี่ยมคางหมูโค้ง ซึ่งเราจะแก้โดยใช้สูตรของนิวตัน-ไลบ์นิซ

3.2.

ในย่อหน้าที่ 3.1 ก่อนหน้า เราได้ตรวจสอบกรณีที่สี่เหลี่ยมคางหมูโค้งอยู่เหนือแกน x ทีนี้ ให้พิจารณากรณีที่เงื่อนไขของปัญหาเหมือนกัน ยกเว้นว่าฟังก์ชันอยู่ใต้แกน x เครื่องหมายลบจะถูกเพิ่มเข้าไปในสูตรมาตรฐานของนิวตัน-ไลบ์นิซ เราจะพิจารณาวิธีแก้ปัญหาดังกล่าวด้านล่างตัวอย่างที่ 2

- คำนวณพื้นที่ของรูปที่ล้อมรอบด้วยเส้น y = x2 + 6x + 2, x = -4, x = -1, y = 0 ในตัวอย่างนี้ เรามีพาราโบลา y = x2 + 6x + 2 ซึ่งมีต้นกำเนิดจากใต้แกน OX เส้นตรง x = -4, x = -1, y = 0 โดยที่ y = 0 จะจำกัดตัวเลขที่ต้องการจากด้านบน เส้นตรง x = -4 และ x = -1 คือขอบเขตที่จะคำนวณอินทิกรัลจำกัดเขต หลักการแก้ปัญหาการหาพื้นที่ของรูปเกือบจะสอดคล้องกับตัวอย่างที่ 1 ข้อแตกต่างเพียงอย่างเดียวคือฟังก์ชันที่กำหนด

ไม่เป็นค่าบวก และยังคงต่อเนื่องเป็นระยะ [-4; -1]. คุณหมายถึงอะไรที่ไม่เป็นบวก? ดังที่เห็นได้จากรูป ตัวเลขที่อยู่ในค่า x ที่ให้มานั้นมีพิกัด "ลบ" โดยเฉพาะ ซึ่งเป็นสิ่งที่เราจำเป็นต้องเห็นและจดจำเมื่อแก้ไขปัญหา เราค้นหาพื้นที่ของรูปโดยใช้สูตรของนิวตัน-ไลบ์นิซโดยมีเครื่องหมายลบอยู่ที่จุดเริ่มต้นเท่านั้น

บทความยังไม่เสร็จสมบูรณ์

หากต้องการเชี่ยวชาญเนื้อหาให้สำเร็จ คุณต้อง:

มาดูการประยุกต์ใช้แคลคูลัสอินทิกรัลกันต่อ ในบทนี้เราจะดูปัญหาทั่วไปและปัญหาที่พบบ่อยที่สุดในการคำนวณพื้นที่ของรูปเครื่องบินโดยใช้อินทิกรัลจำกัดเขต สุดท้ายนี้ ให้ทุกคนที่แสวงหาความหมายในคณิตศาสตร์ชั้นสูงค้นพบมัน คุณไม่มีทางรู้ ในชีวิตจริง คุณจะต้องประมาณพล็อตเดชาโดยใช้ฟังก์ชันพื้นฐาน และค้นหาพื้นที่โดยใช้อินทิกรัลจำกัดจำนวน

2) สามารถใช้สูตรของนิวตัน-ไลบ์นิซและคำนวณอินทิกรัลจำกัดเขตได้ คุณสามารถสร้างความสัมพันธ์ฉันมิตรอันอบอุ่นกับอินทิกรัลชี้ขาดได้ในหน้าอินทิกรัลชี้ขาด ตัวอย่างการแก้ปัญหา งาน “คำนวณพื้นที่โดยใช้อินทิกรัลจำกัด” เกี่ยวข้องกับการสร้างภาพวาดเสมอ ดังนั้นความรู้และทักษะของคุณในการสร้างภาพวาดจึงเป็นประเด็นสำคัญเช่นกัน อย่างน้อยที่สุด คุณจะต้องสามารถสร้างเส้นตรง พาราโบลา และไฮเปอร์โบลาได้

เริ่มจากสี่เหลี่ยมคางหมูโค้งกันก่อน สี่เหลี่ยมคางหมูโค้งเป็นรูปแบนที่ล้อมรอบด้วยกราฟของฟังก์ชันบางอย่าง = (x) แกน วัวและเส้น x = ; x = .

พื้นที่ของสี่เหลี่ยมคางหมูโค้งเป็นตัวเลขเท่ากับอินทิกรัลที่แน่นอน

อินทิกรัลจำกัดจำนวนใดๆ (ที่มีอยู่) มีความหมายทางเรขาคณิตที่ดีมาก ในบทเรียนปริพันธ์กำหนด ตัวอย่างการแก้ปัญหา เราบอกว่าอินทิกรัลจำกัดจำนวนคือตัวเลข และตอนนี้ก็ถึงเวลาที่จะกล่าวถึงข้อเท็จจริงที่เป็นประโยชน์อีกประการหนึ่ง จากมุมมองของเรขาคณิต อินทิกรัลจำกัดเขตคือ AREA นั่นคืออินทิกรัลบางอย่าง (ถ้ามี) สอดคล้องกับพื้นที่ของรูปหนึ่งทางเรขาคณิต พิจารณาอินทิกรัลจำกัดเขต

ปริพันธ์

กำหนดเส้นโค้งบนระนาบ (สามารถวาดได้หากต้องการ) และอินทิกรัลที่แน่นอนนั้นมีค่าเท่ากับตัวเลขกับพื้นที่ของสี่เหลี่ยมคางหมูโค้งที่สอดคล้องกัน



ตัวอย่างที่ 1

, , , .

นี่คือคำสั่งมอบหมายงานทั่วไป จุดที่สำคัญที่สุดโซลูชั่น - การวาดภาพ นอกจากนี้ภาพวาดจะต้องถูกสร้างขึ้นอย่างถูกต้อง

เมื่อสร้างภาพวาด ฉันขอแนะนำลำดับต่อไปนี้ อันดับแรก ควรสร้างเส้นตรงทั้งหมด (ถ้ามี) จะดีกว่า จากนั้นจึงสร้างพาราโบลา ไฮเปอร์โบลา และกราฟของฟังก์ชันอื่นๆ เท่านั้น เทคนิคของการสร้างแบบ pointwise สามารถพบได้ในกราฟวัสดุอ้างอิงและคุณสมบัติของฟังก์ชันพื้นฐาน ที่นั่นคุณยังสามารถค้นหาสื่อที่มีประโยชน์มากสำหรับบทเรียนของเรา - วิธีสร้างพาราโบลาอย่างรวดเร็ว

ในปัญหานี้ วิธีแก้ไขอาจมีลักษณะเช่นนี้

มาวาดรูปกันดีกว่า (โปรดสังเกตว่าสมการ = 0 ระบุแกน วัว):

เราจะไม่แรเงาสี่เหลี่ยมคางหมูโค้ง ตรงนี้ชัดเจนว่าเรากำลังพูดถึงบริเวณใด การแก้ปัญหายังคงดำเนินต่อไปเช่นนี้:

ในส่วน [-2; 1] กราฟฟังก์ชัน = x 2 + 2 อยู่เหนือแกน วัวนั่นเป็นเหตุผล:

คำตอบ: .

ใครมีปัญหาในการคำนวณอินทิกรัลจำกัดเขตและประยุกต์สูตรนิวตัน-ไลบ์นิซ

,

อ้างถึงการบรรยาย Definite Integral ตัวอย่างการแก้ปัญหา หลังจากงานเสร็จสิ้น จะเป็นประโยชน์เสมอที่จะดูภาพวาดและพิจารณาว่าคำตอบนั้นเป็นเรื่องจริงหรือไม่ ในกรณีนี้เรานับจำนวนเซลล์ในภาพวาด "ด้วยตา" - จะมีประมาณ 9 เซลล์ดูเหมือนว่าจะเป็นจริง ชัดเจนอย่างยิ่งว่าหากเราได้รับคำตอบ: 20 ตารางหน่วยก็เห็นได้ชัดว่ามีข้อผิดพลาดเกิดขึ้นที่ไหนสักแห่ง - เห็นได้ชัดว่า 20 เซลล์ไม่พอดีกับตัวเลขที่เป็นปัญหา อย่างน้อยที่สุดก็หนึ่งโหล หากคำตอบเป็นลบ แสดงว่างานนั้นได้รับการแก้ไขอย่างไม่ถูกต้องเช่นกัน

ตัวอย่างที่ 2

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น เอ็กซ์ซี = 4, x = 2, x= 4 และแกน วัว.

นี่คือตัวอย่างให้คุณแก้ด้วยตัวเอง เฉลยเต็มและเฉลยท้ายบทเรียน

จะทำอย่างไรถ้ามีสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกน วัว?

ตัวอย่างที่ 3

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น = อดีต, x= 1 และแกนพิกัด

วิธีแก้ปัญหา: มาวาดรูปกันเถอะ:

หากสี่เหลี่ยมคางหมูโค้งอยู่ใต้แกนจนสุด วัวจากนั้นสามารถหาพื้นที่ได้โดยใช้สูตร:

ในกรณีนี้:

.

ความสนใจ! ไม่ควรสับสนงานทั้งสองประเภท:

1) หากคุณถูกขอให้แก้แค่อินทิกรัลจำกัดจำนวนโดยไม่มีความหมายทางเรขาคณิต ค่านั้นอาจเป็นค่าลบ

2) หากคุณถูกขอให้ค้นหาพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดเขต พื้นที่นั้นจะเป็นบวกเสมอ! นั่นคือสาเหตุที่เครื่องหมายลบปรากฏในสูตรที่เพิ่งกล่าวถึง

ในทางปฏิบัติ ตัวเลขส่วนใหญ่มักจะอยู่ในระนาบครึ่งบนและล่าง ดังนั้น จากปัญหาที่ง่ายที่สุดของโรงเรียน เราจึงไปยังตัวอย่างที่มีความหมายมากขึ้น

ตัวอย่างที่ 4

หาพื้นที่ของรูปเครื่องบินที่ล้อมรอบด้วยเส้น = 2xx 2 , = -x.

วิธีแก้ปัญหา: ก่อนอื่นคุณต้องวาดรูป เมื่อสร้างภาพวาดในปัญหาพื้นที่ เราสนใจจุดตัดกันของเส้นมากที่สุด ลองหาจุดตัดของพาราโบลากัน = 2xx 2 และตรง = -x- ซึ่งสามารถทำได้สองวิธี วิธีแรกคือการวิเคราะห์ เราแก้สมการ:

ซึ่งหมายความว่าขีดจำกัดล่างของการบูรณาการ = 0 ขีดจำกัดบนของการรวม = 3. มักจะสร้างผลกำไรได้มากกว่าและเร็วกว่าในการสร้างบรรทัดทีละจุด และขีดจำกัดของการบูรณาการจะชัดเจน "ด้วยตัวเอง" อย่างไรก็ตาม บางครั้งยังต้องใช้วิธีการวิเคราะห์ในการค้นหาขีดจำกัด ตัวอย่างเช่น กราฟมีขนาดใหญ่เพียงพอ หรือโครงสร้างโดยละเอียดไม่ได้เปิดเผยขีดจำกัดของการอินทิเกรต (อาจเป็นแบบเศษส่วนหรือไม่มีเหตุผล) กลับมาที่งานของเราดีกว่า การสร้างเส้นตรงก่อนแล้วจึงสร้างพาราโบลาจะมีเหตุผลมากกว่า มาวาดรูปกันเถอะ:

ขอย้ำอีกครั้งว่าเมื่อสร้างตามจุด ขีดจำกัดของการบูรณาการมักถูกกำหนด "โดยอัตโนมัติ"

และตอนนี้สูตรการทำงาน:

หากอยู่ในส่วน [ ; ] ฟังก์ชันต่อเนื่องบางอย่าง (x) มากกว่าหรือเท่ากับฟังก์ชันต่อเนื่องบางฟังก์ชัน (x) จากนั้นสามารถหาพื้นที่ของรูปที่เกี่ยวข้องได้โดยใช้สูตร:

ที่นี่คุณไม่จำเป็นต้องคิดว่ารูปนั้นอยู่ที่ตำแหน่งใด - เหนือแกนหรือใต้แกนอีกต่อไป แต่สิ่งสำคัญคือกราฟใดสูงกว่า (สัมพันธ์กับกราฟอื่น) และกราฟใดอยู่ด้านล่าง

ในตัวอย่างที่กำลังพิจารณา เห็นได้ชัดว่าบนส่วนพาราโบลาอยู่เหนือเส้นตรง ดังนั้นจาก 2 xx 2 ต้องถูกลบ – x.

โซลูชันที่สมบูรณ์อาจมีลักษณะดังนี้:

รูปที่ต้องการถูกจำกัดด้วยพาราโบลา = 2xx 2 ด้านบนและตรง = -xด้านล่าง.

บนส่วนที่ 2 xx 2 ≥ -x- ตามสูตรที่เกี่ยวข้อง:

คำตอบ: .

ที่จริงแล้วสูตรของโรงเรียนสำหรับพื้นที่ของสี่เหลี่ยมคางหมูโค้งในระนาบครึ่งล่าง (ดูตัวอย่างที่ 3) เป็นกรณีพิเศษของสูตร

.

เพราะว่าแกน วัวกำหนดโดยสมการ = 0 และกราฟของฟังก์ชัน (x) ซึ่งอยู่ใต้แกน วัว, ที่

.

และตอนนี้มีตัวอย่างบางส่วนสำหรับโซลูชันของคุณเอง

ตัวอย่างที่ 5

ตัวอย่างที่ 6

หาพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

เมื่อแก้ไขปัญหาที่เกี่ยวข้องกับการคำนวณพื้นที่โดยใช้อินทิกรัลจำกัดเขต บางครั้งเหตุการณ์ตลกๆ ก็เกิดขึ้น วาดเสร็จถูกต้อง คำนวณถูก แต่เนื่องจากความประมาท...จึงพบพื้นที่ผิดรูป

ตัวอย่างที่ 7

ก่อนอื่นมาวาดรูปกันก่อน:

ร่างที่เราต้องหาพื้นที่นั้นแรเงาด้วยสีน้ำเงิน (ดูสภาพอย่างละเอียด - ร่างนั้นมีจำนวนจำกัดแค่ไหน!) แต่ในทางปฏิบัติเนื่องจากการไม่ตั้งใจผู้คนจึงมักตัดสินใจว่าจำเป็นต้องหาพื้นที่ของร่างที่แรเงาเป็นสีเขียว!

ตัวอย่างนี้ยังมีประโยชน์เนื่องจากจะคำนวณพื้นที่ของรูปโดยใช้อินทิกรัลจำกัดจำนวนสองตัว จริงหรือ:

1) ในส่วน [-1; 1] เหนือแกน วัวกราฟจะอยู่ตรง = x+1;

2) บนส่วนที่อยู่เหนือแกน วัวกราฟของไฮเปอร์โบลาตั้งอยู่ = (2/x).

เห็นได้ชัดว่าสามารถ (และควร) เพิ่มพื้นที่ได้ ดังนั้น:

คำตอบ:

ตัวอย่างที่ 8

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

นำเสนอสมการในรูปแบบ "โรงเรียน"

และทำการวาดภาพแบบจุดต่อจุด:

จากภาพวาดชัดเจนว่าขีดจำกัดบนของเรา “ดี”: = 1.

แต่ขีดจำกัดล่างคืออะไรล่ะ! เห็นได้ชัดว่านี่ไม่ใช่จำนวนเต็ม แต่คืออะไร?

อาจจะ, =(-1/3)? แต่การรับประกันว่าการวาดภาพนั้นทำขึ้นด้วยความแม่นยำสมบูรณ์แบบอยู่ที่ไหนก็อาจกลายเป็นอย่างนั้นได้ =(-1/4) =(-1/4) จะเกิดอะไรขึ้นถ้าเราสร้างกราฟไม่ถูกต้อง?

ในกรณีเช่นนี้ คุณต้องใช้เวลาเพิ่มเติมและชี้แจงขีดจำกัดของการผสานรวมเชิงวิเคราะห์

ลองหาจุดตัดกันของกราฟกัน

เมื่อต้องการทำเช่นนี้ เราจะแก้สมการ:

.

เพราะฉะนั้น, =(-1/3).

วิธีแก้ปัญหาเพิ่มเติมนั้นไม่สำคัญ สิ่งสำคัญคืออย่าสับสนในการทดแทนและสัญญาณ การคำนวณที่นี่ไม่ใช่วิธีที่ง่ายที่สุด บนส่วน

, ,

ตามสูตรที่เหมาะสม:

คำตอบ:

เพื่อสรุปบทเรียน มาดูงานที่ยากอีกสองงานกัน

ตัวอย่างที่ 9

คำนวณพื้นที่ของภาพที่ล้อมรอบด้วยเส้น

วิธีแก้ไข: ลองพรรณนารูปนี้ในภาพวาด

หากต้องการสร้างภาพวาดแบบจุดต่อจุด คุณจำเป็นต้องทราบลักษณะของไซนัสอยด์ โดยทั่วไป การรู้กราฟของฟังก์ชันพื้นฐานทั้งหมด รวมถึงค่าไซน์บางค่าจะเป็นประโยชน์ สามารถพบได้ในตารางค่า ฟังก์ชันตรีโกณมิติ- ในบางกรณี (เช่น ในกรณีนี้) สามารถสร้างแผนผังได้ ซึ่งกราฟและขีดจำกัดของการรวมควรแสดงอย่างถูกต้องโดยพื้นฐาน

ไม่มีปัญหากับข้อจำกัดของการบูรณาการที่นี่ ซึ่งเป็นไปตามเงื่อนไขโดยตรง:

– “x” เปลี่ยนจากศูนย์เป็น “pi” มาตัดสินใจเพิ่มเติมกัน:

ในส่วนของกราฟของฟังก์ชัน = บาป 3 xซึ่งอยู่เหนือแกน วัวนั่นเป็นเหตุผล:

(1) คุณสามารถดูว่าไซน์และโคไซน์ถูกรวมเข้ากับเลขยกกำลังคี่ได้อย่างไรในบทเรียนปริพันธ์ของฟังก์ชันตรีโกณมิติ เราบีบไซนัสหนึ่งอัน

(2) เราใช้เอกลักษณ์ตรีโกณมิติหลักในรูปแบบ

(3) มาเปลี่ยนตัวแปรกัน ที=คอส xดังนั้น: อยู่เหนือแกน ดังนั้น:

.

.

หมายเหตุ: ให้ความสนใจว่าอินทิกรัลของแทนเจนต์ในคิวบ์ถูกนำมาใช้อย่างไร ข้อพิสูจน์ของอันหลักถูกนำมาใช้ที่นี่ เอกลักษณ์ตรีโกณมิติ

.

ปัญหาที่ 1 (เกี่ยวกับการคำนวณพื้นที่สี่เหลี่ยมคางหมูโค้ง)

ในระบบพิกัดสี่เหลี่ยมคาร์ทีเซียน xOy จะได้รูป (ดูรูป) ที่ล้อมรอบด้วยแกน x เส้นตรง x = a, x = b (รูปสี่เหลี่ยมคางหมูโค้ง จำเป็นต้องคำนวณพื้นที่ของรูปสี่เหลี่ยมคางหมูโค้ง
สารละลาย. เรขาคณิตให้สูตรในการคำนวณพื้นที่ของรูปหลายเหลี่ยมและบางส่วนของวงกลม (เซกเตอร์, เซกเมนต์) เมื่อใช้การพิจารณาทางเรขาคณิต เราสามารถหาค่าโดยประมาณของพื้นที่ที่ต้องการได้เท่านั้น โดยให้เหตุผลดังนี้

มาแบ่งส่วนกัน [a; b] (ฐานของสี่เหลี่ยมคางหมูโค้ง) ออกเป็น n ส่วนเท่า ๆ กัน; พาร์ติชันนี้ดำเนินการโดยใช้คะแนน x 1, x 2, ... x k, ... x n-1 ให้เราวาดเส้นตรงผ่านจุดเหล่านี้ขนานกับแกน y จากนั้น สี่เหลี่ยมคางหมูส่วนโค้งที่กำหนดจะถูกแบ่งออกเป็น n ส่วน ออกเป็นคอลัมน์แคบๆ n คอลัมน์ พื้นที่ของสี่เหลี่ยมคางหมูทั้งหมดเท่ากับผลรวมของพื้นที่ของคอลัมน์

ให้เราพิจารณาคอลัมน์ที่ k แยกกันนั่นคือ สี่เหลี่ยมคางหมูโค้งซึ่งมีฐานเป็นส่วน ลองแทนที่ด้วยสี่เหลี่ยมที่มีฐานและความสูงเท่ากันกับ f(x k) (ดูรูป) พื้นที่ของสี่เหลี่ยมผืนผ้าเท่ากับ \(f(x_k) \cdot \Delta x_k \) โดยที่ \(\Delta x_k \) คือความยาวของส่วน; เป็นเรื่องปกติที่จะต้องพิจารณาผลลัพธ์ที่ได้ว่าเป็นค่าโดยประมาณของพื้นที่ของคอลัมน์ k

หากเราทำแบบเดียวกันกับคอลัมน์อื่นๆ ทั้งหมด เราจะได้ผลลัพธ์ดังนี้ พื้นที่ S ของสี่เหลี่ยมคางหมูส่วนโค้งที่กำหนดนั้นมีค่าประมาณเท่ากับพื้นที่ S n ของรูปขั้นบันไดที่ประกอบด้วยสี่เหลี่ยม n รูป (ดูรูป):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
ในที่นี้ เพื่อความสม่ำเสมอของสัญกรณ์ เราถือว่า a = x 0, b = xn; \(\Delta x_0 \) - ความยาวของส่วน \(\Delta x_1 \) - ความยาวของส่วน ฯลฯ ในกรณีนี้ ตามที่เราตกลงกันข้างต้น \(\Delta x_0 = \dots = \Delta x_(n-1) \)

ดังนั้น \(S \ประมาณ S_n \) และความเท่าเทียมกันโดยประมาณนี้มีความแม่นยำมากกว่า ยิ่ง n ยิ่งมาก
ตามคำจำกัดความเชื่อกันว่าพื้นที่ที่ต้องการของสี่เหลี่ยมคางหมูโค้งเท่ากับขีด จำกัด ของลำดับ (S n):
$$ S = \lim_(n \to \infty) S_n $$

ปัญหาที่ 2 (เรื่องการย้ายจุด)
จุดวัสดุเคลื่อนที่เป็นเส้นตรง การขึ้นอยู่กับความเร็วตรงเวลาแสดงโดยสูตร v = v(t) ค้นหาการเคลื่อนที่ของจุดในช่วงเวลาหนึ่ง [a; ข]
สารละลาย. หากการเคลื่อนไหวสม่ำเสมอ ปัญหาก็จะได้รับการแก้ไขอย่างง่ายดาย: s = vt เช่น s = โวลต์(บี-เอ) สำหรับการเคลื่อนไหวที่ไม่สม่ำเสมอ คุณต้องใช้แนวคิดเดียวกันกับที่ใช้แก้ไขปัญหาเดิม
1) แบ่งช่วงเวลา [a; b] ออกเป็น n ส่วนเท่าๆ กัน
2) พิจารณาช่วงระยะเวลาหนึ่งและสมมุติว่าในช่วงเวลานี้ความเร็วคงที่เท่ากับเวลา t k ดังนั้นเราจึงถือว่า v = v(t k)
3) ลองหาค่าโดยประมาณของการเคลื่อนที่ของจุดในช่วงเวลาหนึ่ง เราจะเขียนค่าโดยประมาณนี้เป็น sk
\(s_k = v(t_k) \เดลต้า t_k \)
4) ค้นหาค่าประมาณของการกระจัด:
\(s \ประมาณ S_n \) โดยที่
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) การกระจัดที่ต้องการเท่ากับขีดจำกัดของลำดับ (S n):
$$ s = \lim_(n \to \infty) S_n $$

มาสรุปกัน การแก้ปัญหาต่าง ๆ ลดลงเหลือแบบจำลองทางคณิตศาสตร์เดียวกัน ปัญหามากมายจากสาขาวิทยาศาสตร์และเทคโนโลยีต่างๆ นำไปสู่รูปแบบเดียวกันในกระบวนการแก้ไข ดังนั้นนี้ แบบจำลองทางคณิตศาสตร์ต้องศึกษาเป็นพิเศษ

แนวคิดของอินทิกรัลจำกัดเขต

ขอให้เราให้คำอธิบายทางคณิตศาสตร์ของแบบจำลองที่สร้างขึ้นในสามปัญหาที่พิจารณาสำหรับฟังก์ชัน y = f(x) ต่อเนื่อง (แต่ไม่จำเป็นต้องไม่เป็นลบ ดังที่สมมติไว้ในปัญหาที่พิจารณา) ในช่วงเวลา [a; ข]:
1) แยกส่วน [a; b] ออกเป็น n ส่วนเท่าๆ กัน;
2) สร้างผลรวม $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) คำนวณ $$ \lim_(n \to \infty) S_n $$

ในการรู้ การวิเคราะห์ทางคณิตศาสตร์ได้รับการพิสูจน์แล้วว่าขีดจำกัดนี้มีอยู่ในกรณีของฟังก์ชันต่อเนื่อง (หรือต่อเนื่องเป็นชิ้นๆ) เรียกว่าอินทิกรัลจำกัดเขตของฟังก์ชัน y = f(x) ส่วน [a; b] และแสดงดังนี้:
\(\int\limits_a^b f(x) dx \)
ตัวเลข a และ b เรียกว่าขีดจำกัดของการอินทิเกรต (ล่างและบน ตามลำดับ)

กลับไปที่งานที่กล่าวถึงข้างต้น คำจำกัดความของพื้นที่ที่กำหนดในปัญหาที่ 1 สามารถเขียนใหม่ได้ดังนี้:
\(S = \int\ขีดจำกัด_a^b f(x) dx \)
โดยที่ S คือพื้นที่ของสี่เหลี่ยมคางหมูโค้งแสดงในรูปด้านบน นี่คือความหมายทางเรขาคณิตของอินทิกรัลจำกัดเขต

นิยามของการกระจัด s ของจุดที่เคลื่อนที่เป็นเส้นตรงด้วยความเร็ว v = v(t) ตลอดระยะเวลาตั้งแต่ t = a ถึง t = b ตามที่ให้ไว้ในปัญหาที่ 2 สามารถเขียนใหม่ได้ดังนี้

สูตรนิวตัน-ไลบ์นิซ

ก่อนอื่น มาตอบคำถามกันก่อนว่า อะไรคือความสัมพันธ์ระหว่างอินทิกรัลจำกัดจำนวนกับแอนติเดริเวทีฟ?

คำตอบสามารถพบได้ในปัญหาที่ 2 ในด้านหนึ่ง การกระจัด s ของจุดที่เคลื่อนที่เป็นเส้นตรงด้วยความเร็ว v = v(t) ตลอดระยะเวลาตั้งแต่ t = a ถึง t = b คำนวณโดย สูตร
\(S = \int\ขีดจำกัด_a^b v(t) dt \)

ในทางกลับกัน พิกัดของจุดที่เคลื่อนที่เป็นแอนติเดริเวทีฟของความเร็ว ลองแสดงว่ามันเป็น s(t); นี่หมายความว่าการกระจัด s แสดงได้ด้วยสูตร s = s(b) - s(a) เป็นผลให้เราได้รับ:
\(S = \int\ขีดจำกัด_a^b v(t) dt = s(b)-s(a) \)
โดยที่ s(t) คือแอนติเดริเวทีฟของ v(t)

ทฤษฎีบทต่อไปนี้ได้รับการพิสูจน์แล้วในหลักสูตรการวิเคราะห์ทางคณิตศาสตร์
ทฤษฎีบท. ถ้าฟังก์ชัน y = f(x) ต่อเนื่องกันในช่วง [a; b] ดังนั้นสูตรจึงใช้ได้
\(S = \int\ขีดจำกัด_a^b f(x) dx = F(b)-F(a) \)
โดยที่ F(x) คือแอนติเดริเวทีฟของ f(x)

สูตรข้างต้นมักเรียกว่าสูตร Newton-Leibniz เพื่อเป็นเกียรติแก่นักฟิสิกส์ชาวอังกฤษ Isaac Newton (1643-1727) และนักปรัชญาชาวเยอรมัน Gottfried Leibniz (1646-1716) ซึ่งได้รับมันอย่างเป็นอิสระจากกันและเกือบจะพร้อมกัน

ในทางปฏิบัติ แทนที่จะเขียน F(b) - F(a) จะใช้สัญลักษณ์ \(\left. F(x)\right|_a^b \) (บางครั้งเรียกว่าการแทนที่สองครั้ง) และเขียนนิวตันใหม่ตามไปด้วย - สูตรของไลบ์นิซมีรูปแบบดังนี้:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

เมื่อคำนวณอินทิกรัลจำกัดเขต ให้หาแอนติเดริเวทีฟก่อน แล้วจึงทำการแทนสองครั้ง

จากสูตรของนิวตัน-ไลบ์นิซ เราจะได้คุณสมบัติของอินทิกรัลจำกัดเขตสองรายการ

คุณสมบัติ 1. ปริพันธ์ของผลรวมของฟังก์ชัน เท่ากับผลรวมปริพันธ์:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

คุณสมบัติ 2. ตัวประกอบคงที่สามารถนำออกจากเครื่องหมายอินทิกรัลได้:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

การคำนวณพื้นที่ ตัวเลขแบนโดยใช้อินทิกรัลจำกัดจำนวน

เมื่อใช้อินทิกรัล คุณสามารถคำนวณพื้นที่ไม่เพียงแต่ของสี่เหลี่ยมคางหมูโค้งเท่านั้น แต่ยังรวมไปถึงรูปร่างเครื่องบินประเภทที่ซับซ้อนมากขึ้นด้วย ตัวอย่างเช่น ที่แสดงในรูป รูป P ถูกจำกัดด้วยเส้นตรง x = a, x = b และกราฟของฟังก์ชันต่อเนื่อง y = f(x), y = g(x) และบนเซกเมนต์ [a; b] ความไม่เท่าเทียมกัน \(g(x) \leq f(x) \) ถืออยู่ ในการคำนวณพื้นที่ S ของรูปดังกล่าว เราจะดำเนินการดังนี้:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

ดังนั้น พื้นที่ S ของรูปที่ล้อมรอบด้วยเส้นตรง x = a, x = b และกราฟของฟังก์ชัน y = f(x), y = g(x) ต่อเนื่องกันบนเซ็กเมนต์ และเช่นนั้นสำหรับ x ใดๆ จากเซ็กเมนต์ [เป็น; b] ความไม่เท่าเทียมกัน \(g(x) \leq f(x) \) เป็นที่พอใจ คำนวณโดยสูตร
\(S = \int\ขีดจำกัด_a^b (f(x)-g(x))dx \)

โต๊ะ อินทิกรัลไม่ จำกัด(สารต้านอนุพันธ์) ของบางฟังก์ชัน $$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1 ) )(n+1) +C \;\; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(อาร์คซิน) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch ) x +C $$

สิ่งตีพิมพ์ในหัวข้อ