Najmenej bežné viaceré príklady na vyriešenie. Nod a nok čísel - najväčší spoločný deliteľ a najmenší spoločný násobok viacerých čísel

Študenti dostávajú veľa matematických úloh. Medzi nimi sú veľmi často úlohy s nasledujúcou formuláciou: existujú dve hodnoty. Ako nájsť najmenší spoločný násobok daných čísel? Je potrebné vedieť vykonávať takéto úlohy, keďže nadobudnuté zručnosti sa využívajú na prácu so zlomkami pri rôznych menovateľov. V článku rozoberieme, ako nájsť LCM a základné pojmy.

Pred nájdením odpovede na otázku, ako nájsť LCM, musíte definovať pojem násobok. Najčastejšie znie formulácia tohto pojmu takto: násobok nejakej hodnoty A sa nazýva taký prirodzené číslo, ktorý bude bezo zvyšku deliteľný A. Takže pre 4 násobky bude 8, 12, 16, 20 atď., až do požadovaného limitu.

V tomto prípade môže byť počet deliteľov pre určitú hodnotu obmedzený a násobkov je nekonečne veľa. Rovnaká hodnota je aj pre prírodné hodnoty. Toto je ukazovateľ, ktorý sa nimi bezo zvyšku delí. Keď sme sa zaoberali konceptom najmenšej hodnoty pre určité ukazovatele, prejdime k tomu, ako ju nájsť.

Nájdenie NOC

Najmenší násobok dvoch alebo viacerých exponentov je najmenšie prirodzené číslo, ktoré je plne deliteľné všetkými danými číslami.

Existuje niekoľko spôsobov, ako nájsť takúto hodnotu., zvážte nasledujúcimi spôsobmi:

  1. Ak sú čísla malé, napíšte do riadku všetky ním deliteľné. Pokračujte v tom, kým medzi nimi nenájdete niečo spoločné. V zázname sú označené písmenom K. Napríklad pre 4 a 3 je najmenší násobok 12.
  2. Ak sú veľké alebo potrebujete nájsť násobok pre 3 alebo viac hodnôt, potom by ste mali použiť inú techniku, ktorá zahŕňa rozklad čísel na prvočísla. Najprv rozložte najväčšie z uvedených a potom všetky ostatné. Každý z nich má svoj vlastný počet násobiteľov. Ako príklad si rozložme 20 (2*2*5) a 50 (5*5*2). Pri menšom z nich podčiarknite faktory a pridajte k najväčšiemu. Výsledkom bude 100, čo bude najmenší spoločný násobok vyššie uvedených čísel.
  3. Pri hľadaní 3 čísel (16, 24 a 36) sú princípy rovnaké ako pre ostatné dve. Rozviňme každý z nich: 16 = 2*2*2*2, 24=2*2*2*3, 36=2*2*3*3. Do rozkladu najväčšieho neboli zahrnuté len dve dvojky z rozšírenia čísla 16. Sčítame ich a dostaneme 144, čo je najmenší výsledok pre predtým uvedené číselné hodnoty.

Teraz vieme, aká je všeobecná technika na nájdenie najmenšej hodnoty pre dve, tri alebo viac hodnôt. Existujú však aj súkromné ​​metódy, pomoc pri hľadaní NOC, ak predchádzajúce nepomáhajú.

Ako nájsť GCD a NOC.

Súkromné ​​spôsoby hľadania

Ako pri každej matematickej sekcii, existujú špeciálne prípady nájdenia LCM, ktoré pomáhajú v špecifických situáciách:

  • ak je jedno z čísel deliteľné ostatnými bezo zvyšku, potom sa mu rovná najnižší násobok týchto čísel (NOC 60 a 15 sa rovná 15);
  • Prvočísla nemajú spoločných prvočíselných deliteľov. Ich najmenšia hodnota sa rovná súčinu týchto čísel. Takže pre čísla 7 a 8 to bude 56;
  • rovnaké pravidlo platí aj pre iné prípady, vrátane špeciálnych, o ktorých sa možno dočítať v odbornej literatúre. To by malo zahŕňať aj prípady rozkladu zložených čísel, ktoré sú predmetom samostatných článkov a dokonca aj dizertačných prác.

Špeciálne prípady sú menej časté ako štandardné príklady. Ale vďaka nim sa môžete naučiť pracovať so zlomkami rôzneho stupňa zložitosti. To platí najmä pre zlomky., kde sú rôzni menovatelia.

Niekoľko príkladov

Pozrime sa na niekoľko príkladov, vďaka ktorým pochopíte princíp hľadania najmenšieho násobku:

  1. Nájdeme LCM (35; 40). Najprv rozložíme 35 = 5*7, potom 40 = 5*8. K najmenšiemu číslu pridáme 8 a dostaneme NOC 280.
  2. NOC (45; 54). Každý z nich rozložíme: 45 = 3*3*5 a 54 = 3*3*6. Pripočítame číslo 6 k 45. Dostaneme NOC rovné 270.
  3. Dobre posledný príklad. Existuje 5 a 4. Neexistujú pre ne jednoduché násobky, takže najmenší spoločný násobok bude v tomto prípade ich súčin rovný 20.

Vďaka príkladom môžete pochopiť, ako sa NOC nachádza, aké sú nuansy a aký je význam takýchto manipulácií.

Nájsť NOC je oveľa jednoduchšie, ako by sa na prvý pohľad mohlo zdať. Na tento účel sa používa jednoduché rozšírenie a násobenie. jednoduché hodnoty Navzájom. Schopnosť pracovať s týmto úsekom matematiky pomáha pri ďalšom štúdiu matematických tém, najmä zlomkov rôzneho stupňa zložitosti.

Nezabudnite pravidelne riešiť príklady rôzne metódy, to rozvíja logický aparát a umožňuje vám zapamätať si množstvo výrazov. Naučte sa metódy na nájdenie takéhoto ukazovateľa a budete vedieť dobre pracovať so zvyškom matematických častí. Šťastné učenie matematiky!

Video

Toto video vám pomôže pochopiť a zapamätať si, ako nájsť najmenší spoločný násobok.

Ale mnohé prirodzené čísla sú rovnomerne deliteľné inými prirodzenými číslami.

Napríklad:

Číslo 12 je deliteľné 1, 2, 3, 4, 6, 12;

Číslo 36 je deliteľné 1, 2, 3, 4, 6, 12, 18, 36.

Čísla, ktorými je číslo deliteľné (pre 12 je to 1, 2, 3, 4, 6 a 12), sa nazývajú deliteľmi čísel. Deliteľ prirodzeného čísla a je prirodzené číslo, ktoré delí dané číslo a bez stopy. Prirodzené číslo, ktoré má viac ako dva faktory, sa nazýva zložený .

Všimnite si, že čísla 12 a 36 majú spoločných deliteľov. Sú to čísla: 1, 2, 3, 4, 6, 12. Najväčší deliteľ týchto čísel je 12. Spoločný deliteľ týchto dvoch čísel a a b je číslo, ktorým sú obe dané čísla bezo zvyšku deliteľné a a b.

spoločný násobok niekoľko čísel sa nazýva číslo, ktoré je deliteľné každým z týchto čísel. Napríklad, čísla 9, 18 a 45 majú spoločný násobok 180. Ale aj 90 a 360 sú ich spoločné násobky. Spomedzi všetkých jcommon násobkov je vždy najmenší, in tento prípad je 90. Toto číslo sa volá najmenejspoločný násobok (LCM).

LCM je vždy prirodzené číslo, ktoré musí byť väčšie ako najväčšie z čísel, pre ktoré je definované.

Najmenší spoločný násobok (LCM). Vlastnosti.

Komutatívnosť:

Asociativita:

Konkrétne, ak a sú prvočísla , potom:

Najmenší spoločný násobok dvoch celých čísel m a n je deliteľom všetkých ostatných spoločných násobkov m a n. Navyše množina spoločných násobkov m,n sa zhoduje s množinou násobkov pre LCM( m,n).

Asymptotiku for možno vyjadriť pomocou niektorých číselných teoretických funkcií.

takže, Čebyševova funkcia. Ako aj:

Vyplýva to z definície a vlastností Landauovej funkcie g(n).

Čo vyplýva zo zákona o rozdeľovaní základné čísla.

Hľadanie najmenšieho spoločného násobku (LCM).

NOC( a, b) možno vypočítať niekoľkými spôsobmi:

1. Ak je známy najväčší spoločný deliteľ, môžete použiť jeho vzťah s LCM:

2. Nech je známy kanonický rozklad oboch čísel na prvočiniteľa:

kde p 1 ,...,p k sú rôzne prvočísla a d 1,...,dk a e 1 ,...,ek sú nezáporné celé čísla (môžu byť nulové, ak zodpovedajúce prvočíslo nie je v expanzii).

Potom LCM ( a,b) sa vypočíta podľa vzorca:

Inými slovami, rozklad LCM obsahuje všetky prvočísla, ktoré sa vyskytujú aspoň v jednom z rozkladov čísel a, b a vezme sa najväčší z dvoch exponentov tohto faktora.

Príklad:

Výpočet najmenšieho spoločného násobku niekoľkých čísel možno zredukovať na niekoľko po sebe idúcich výpočtov LCM dvoch čísel:

Pravidlo. Ak chcete nájsť LCM série čísel, potrebujete:

- rozložiť čísla na prvočísla;

- preniesť najväčšie rozšírenie na faktory požadovaného súčinu (súčin faktorov najväčšieho počtu z daných) a potom pridať faktory z rozšírenia ďalších čísel, ktoré sa v prvom čísle nevyskytujú alebo sú v ňom menší počet krát;

- výsledným súčinom prvočiniteľov bude LCM daných čísel.

Akékoľvek dve alebo viac prirodzených čísel má svoj vlastný LCM. Ak čísla nie sú navzájom násobkami alebo nemajú rovnaké faktory v expanzii, potom sa ich LCM rovná súčinu týchto čísel.

Prvočísla čísla 28 (2, 2, 7) boli doplnené koeficientom 3 (číslo 21), výsledný súčin (84) bude najmenšie číslo, ktoré je deliteľné 21 a 28.

Prvočísla najväčšieho čísla 30 boli doplnené o faktor 5 čísla 25, výsledný súčin 150 je väčší ako najväčšie číslo 30 a je deliteľný všetkými danými číslami bezo zvyšku. Toto je najmenší možný súčin (150, 250, 300...), ktorého všetky zadané čísla sú násobkami.

Čísla 2,3,11,37 sú prvočísla, takže ich LCM sa rovná súčinu daných čísel.

Pravidlo. Ak chcete vypočítať LCM prvočísel, musíte všetky tieto čísla vynásobiť.

Ďalšia možnosť:

Ak chcete nájsť najmenší spoločný násobok (LCM) niekoľkých čísel, potrebujete:

1) predstavujú každé číslo ako súčin jeho prvočísel, napríklad:

504 \u003d 2 2 2 3 3 7,

2) napíšte mocniny všetkých prvočiniteľov:

504 \u003d 2 2 2 3 3 7 \u003d 2 3 3 2 7 1,

3) zapíšte si všetkých prvočíselníkov (násobiteľov) každého z týchto čísel;

4) vyberte najväčší stupeň každého z nich, ktorý sa nachádza vo všetkých rozšíreniach týchto čísel;

5) vynásobte tieto právomoci.

Príklad. Nájdite LCM čísel: 168, 180 a 3024.

Riešenie. 168 \u003d 2 2 2 3 7 \u003d 2 3 3 1 7 1,

180 \u003d 2 2 3 3 5 \u003d 2 2 3 2 5 1,

3024 = 2 2 2 2 3 3 3 7 = 2 4 3 3 7 1 .

Vypíšeme najväčšie mocniny všetkých prvočíselných deliteľov a vynásobíme ich:

LCM = 2 4 3 3 5 1 7 1 = 15120.

Téma "Viacnásobné čísla" sa študuje v 5. ročníku stredná škola. Jeho cieľom je zlepšiť písomné a ústne zručnosti matematických výpočtov. V tejto lekcii sú predstavené nové pojmy - „viacnásobné čísla“ a „delitelia“, vypracúva sa technika hľadania deliteľov a násobkov prirodzeného čísla, schopnosť nájsť LCM rôznymi spôsobmi.

Táto téma je veľmi dôležitá. Poznatky na ňom možno uplatniť pri riešení príkladov so zlomkami. Aby ste to dosiahli, musíte nájsť spoločného menovateľa výpočtom najmenšieho spoločného násobku (LCM).

Násobok A je celé číslo, ktoré je deliteľné A bezo zvyšku.

Každé prirodzené číslo má nekonečný počet jeho násobkov. Považuje sa za najmenej. Násobok nemôže byť menší ako samotné číslo.

Je potrebné dokázať, že číslo 125 je násobkom čísla 5. Aby ste to dosiahli, musíte vydeliť prvé číslo druhým. Ak je 125 deliteľné 5 bezo zvyšku, odpoveď je áno.

Táto metóda je použiteľná pre malé čísla.

Pri výpočte LCM existujú špeciálne prípady.

1. Ak potrebujete nájsť spoločný násobok pre 2 čísla (napríklad 80 a 20), kde jedno z nich (80) je deliteľné bezo zvyšku druhým (20), potom je toto číslo (80) najmenšie násobok týchto dvoch čísel.

LCM (80, 20) = 80.

2. Ak dve nemajú spoločného deliteľa, potom môžeme povedať, že ich LCM je súčinom týchto dvoch čísel.

LCM (6,7) = 42.

Zvážte posledný príklad. 6 a 7 vo vzťahu k 42 sú deliče. Delia násobok bezo zvyšku.

V tomto príklade sú 6 a 7 párové deliče. Ich súčin sa rovná najväčšiemu násobku (42).

Číslo sa nazýva prvočíslo, ak je deliteľné len samo sebou alebo 1 (3:1=3; 3:3=1). Ostatné sa nazývajú kompozitné.

V inom príklade musíte určiť, či 9 je deliteľ vzhľadom na 42.

42:9=4 (zvyšok 6)

Odpoveď: 9 nie je deliteľom 42, pretože odpoveď má zvyšok.

Deliteľ sa líši od násobku tým, že deliteľ je číslo, ktorým sa delia prirodzené čísla, a samotný násobok je deliteľný týmto číslom.

najväčší spoločný deliteľčísla a a b, vynásobený ich najmenším násobkom, dá súčin samotných čísel a a b.

Konkrétne: GCD (a, b) x LCM (a, b) = a x b.

Spoločné násobky pre komplexnejšie čísla sa nachádzajú nasledujúcim spôsobom.

Nájdite napríklad LCM pre 168, 180, 3024.

Tieto čísla rozložíme na prvočísla, zapíšeme ich ako súčin mocnin:

168=2³x3¹x7¹

2⁴х3³х5¹х7¹=15120

LCM (168, 180, 3024) = 15120.

Násobok čísla je číslo, ktoré je bezo zvyšku deliteľné daným číslom. Najmenší spoločný násobok (LCM) skupiny čísel je najmenšie číslo, ktoré je rovnomerne deliteľné každým číslom v skupine. Ak chcete nájsť najmenší spoločný násobok, musíte nájsť prvočísla daných čísel. LCM možno vypočítať aj pomocou množstva iných metód, ktoré sú použiteľné pre skupiny dvoch alebo viacerých čísel.

Kroky

Séria násobkov

    Pozrite sa na tieto čísla. Tu opísanú metódu je najlepšie použiť, keď sú uvedené dve čísla, každé menšie ako 10. Ak je dané veľké čísla, použite inú metódu.

    • Nájdite napríklad najmenší spoločný násobok čísel 5 a 8. Ide o malé čísla, preto je možné použiť túto metódu.
  1. Násobok čísla je číslo, ktoré je bezo zvyšku deliteľné daným číslom. Viacnásobné čísla nájdete v tabuľke násobenia.

    • Napríklad čísla, ktoré sú násobkami 5, sú: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Napíšte sériu čísel, ktoré sú násobkami prvého čísla. Urobte to pod násobkami prvého čísla, aby ste porovnali dva riadky čísel.

    • Napríklad čísla, ktoré sú násobkami 8, sú: 8, 16, 24, 32, 40, 48, 56 a 64.
  3. Nájdite najmenšie číslo, ktoré sa vyskytuje v oboch radoch násobkov. Možno budete musieť napísať dlhé série násobkov, aby ste našli celkový počet. Najmenšie číslo, ktoré sa vyskytuje v oboch radoch násobkov, je najmenší spoločný násobok.

    • Napríklad najmenšie číslo, ktoré sa vyskytuje v rade násobkov 5 a 8, je 40. Preto je 40 najmenší spoločný násobok 5 a 8.

    Prvotná faktorizácia

    1. Pozrite sa na tieto čísla. Tu opísanú metódu je najlepšie použiť, ak sú zadané dve čísla, ktoré sú obe väčšie ako 10. Ak sú zadané menšie čísla, použite inú metódu.

      • Nájdite napríklad najmenší spoločný násobok čísel 20 a 84. Každé z čísel je väčšie ako 10, preto je možné použiť túto metódu.
    2. Faktorizujte prvé číslo. To znamená, že musíte nájsť také prvočísla, keď vynásobíte, dostanete dané číslo. Po nájdení hlavných faktorov ich zapíšte ako rovnosť.

      • Napríklad, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\krát 10=20) a 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10). Prvočísla čísla 20 sú teda čísla 2, 2 a 5. Zapíšte ich ako výraz: .
    3. Zlož druhé číslo do prvočiniteľov. Urobte to rovnakým spôsobom, ako ste rozkladali prvé číslo, teda nájdite také prvočísla, ktoré po vynásobení dostanú toto číslo.

      • Napríklad, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42) a 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6). Prvočísla čísla 84 sú teda čísla 2, 7, 3 a 2. Zapíšte ich ako výraz: .
    4. Napíšte spoločné faktory pre obe čísla. Napíšte také faktory ako operáciu násobenia. Pri zapisovaní každého faktora ho prečiarknite v oboch výrazoch (výrazoch, ktoré popisujú rozklad čísel na prvočísla).

      • Napríklad spoločný faktor pre obe čísla je 2, tak napíšte 2 × (\displaystyle 2\times ) a prečiarknite 2 v oboch výrazoch.
      • Spoločný faktor pre obe čísla je ďalší faktor 2, tak napíšte 2 × 2 (\displaystyle 2\time 2) a prečiarknite druhé 2 v oboch výrazoch.
    5. Pridajte zostávajúce faktory do operácie násobenia. Ide o faktory, ktoré nie sú prečiarknuté v oboch výrazoch, teda faktory, ktoré nie sú spoločné pre obe čísla.

      • Napríklad vo výraze 20 = 2 × 2 × 5 (\displaystyle 20=2\krát 2\krát 5) obe dvojky (2) sú prečiarknuté, pretože ide o spoločné faktory. Faktor 5 nie je prečiarknutý, preto zapíšte operáciu násobenia takto: 2 × 2 × 5 (\displaystyle 2\time 2\time 5)
      • Vo výraze 84 = 2 × 7 × 3 × 2 (\displaystyle 84=2\krát 7\krát 3\krát 2) obe dvojky (2) sú tiež prečiarknuté. Faktory 7 a 3 nie sú prečiarknuté, preto operáciu násobenia zapíšte takto: 2 × 2 × 5 × 7 × 3 (\displaystyle 2\krát 2\krát 5\krát 7\krát 3).
    6. Vypočítajte najmenší spoločný násobok. Ak to chcete urobiť, vynásobte čísla v písomnej operácii násobenia.

      • Napríklad, 2 × 2 × 5 × 7 × 3 = 420 (\displaystyle 2\krát 2\krát 5\krát 7\krát 3=420). Takže najmenší spoločný násobok 20 a 84 je 420.

    Hľadanie spoločných deliteľov

    1. Nakreslite mriežku ako pri hre piškvorky. Takáto mriežka pozostáva z dvoch rovnobežných čiar, ktoré sa pretínajú (v pravom uhle) s dvoma ďalšími rovnobežnými čiarami. Výsledkom budú tri riadky a tri stĺpce (mriežka vyzerá veľmi podobne ako znak #). Napíšte prvé číslo do prvého riadku a druhého stĺpca. Napíšte druhé číslo do prvého riadku a tretieho stĺpca.

      • Napríklad nájdite najmenší spoločný násobok 18 a 30. Napíšte 18 do prvého riadka a druhého stĺpca a napíšte 30 do prvého riadka a tretieho stĺpca.
    2. Nájdite deliteľa spoločného pre obe čísla. Napíšte to do prvého riadku a prvého stĺpca. Je lepšie hľadať prvočíselníkov, ale nie je to podmienkou.

      • Napríklad 18 a 30 sú párne čísla, takže ich spoločný deliteľ je 2. Napíš teda 2 do prvého riadku a prvého stĺpca.
    3. Vydeľte každé číslo prvým deliteľom. Každý podiel napíšte pod príslušné číslo. Kvocient je výsledkom delenia dvoch čísel.

      • Napríklad, 18 ÷ 2 = 9 (\displaystyle 18\div 2=9), tak napíšte 9 pod 18.
      • 30 ÷ 2 = 15 (\displaystyle 30\div 2=15), tak napíšte 15 pod 30.
    4. Nájdite deliteľa spoločného pre oba kvocienty. Ak takýto deliteľ neexistuje, preskočte nasledujúce dva kroky. V opačnom prípade zapíšte deliteľa do druhého riadku a prvého stĺpca.

      • Napríklad 9 a 15 sú deliteľné 3, preto napíšte 3 do druhého riadku a prvého stĺpca.
    5. Vydeľte každý podiel druhým deliteľom. Každý výsledok delenia zapíšte pod príslušný podiel.

      • Napríklad, 9 ÷ 3 = 3 (\displaystyle 9\div 3=3), tak napíšte 3 pod 9.
      • 15 ÷ 3 = 5 (\displaystyle 15\div 3=5), tak napíšte 5 pod 15.
    6. V prípade potreby doplňte mriežku o ďalšie bunky. Opakujte vyššie uvedené kroky, kým podiely nebudú mať spoločného deliteľa.

    7. Zakrúžkujte čísla v prvom stĺpci a poslednom riadku mriežky. Potom napíšte zvýraznené čísla ako operáciu násobenia.

      • Napríklad čísla 2 a 3 sú v prvom stĺpci a čísla 3 a 5 sú v poslednom riadku, takže operáciu násobenia napíšte takto: 2 × 3 × 3 × 5 (\displaystyle 2\krát 3\krát 3\krát 5).
    8. Nájdite výsledok násobenia čísel. Tým sa vypočíta najmenší spoločný násobok dvoch daných čísel.

      • Napríklad, 2 × 3 × 3 × 5 = 90 (\displaystyle 2\krát 3\krát 3\krát 5=90). Takže najmenší spoločný násobok 18 a 30 je 90.

    Euklidov algoritmus

    1. Pamätajte na terminológiu spojenú s operáciou delenia. Dividenda je číslo, ktoré sa delí. Deliteľ je číslo, ktorým sa má deliť. Kvocient je výsledkom delenia dvoch čísel. Zvyšok je číslo, ktoré zostane po delení dvoch čísel.

      • Napríklad vo výraze 15 ÷ 6 = 2 (\displaystyle 15\div 6=2) odpočinok. 3:
        15 je deliteľné
        6 je deliteľ
        2 je súkromný
        3 je zvyšok.

Zvážte riešenie nasledujúceho problému. Chlapčenský krok má 75 cm, dievčenský 60 cm.Je potrebné nájsť najmenšiu vzdialenosť, na ktorú obaja urobia celočíselný počet krokov.

Riešenie. Celá cesta, ktorou chalani prejdú, musí byť bezo zvyšku deliteľná 60 a 70, pretože každý musí urobiť celočíselný počet krokov. Inými slovami, odpoveď musí byť násobkom 75 aj 60.

Najprv vypíšeme všetky násobky pre číslo 75. Dostaneme:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

Teraz si vypíšme čísla, ktoré budú násobkom 60. Dostaneme:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Teraz nájdeme čísla, ktoré sú v oboch riadkoch.

  • Spoločné násobky čísel budú čísla, 300, 600 atď.

Najmenším z nich je číslo 300. V tomto prípade sa bude volať najmenší spoločný násobok čísel 75 a 60.

Ak sa vrátime k problému, najmenšia vzdialenosť, na ktorú chlapci urobia celý počet krokov, bude 300 cm. Chlapec prejde touto cestou v 4 krokoch a dievča bude musieť urobiť 5 krokov.

Hľadanie najmenšieho spoločného násobku

  • Najmenší spoločný násobok dvoch prirodzených čísel aab je najmenšie prirodzené číslo, ktoré je násobkom oboch prirodzených čísel a a b.

Aby sme našli najmenší spoločný násobok dvoch čísel, nie je potrebné zapisovať všetky násobky týchto čísel za sebou.

Môžete použiť nasledujúcu metódu.

Ako nájsť najmenší spoločný násobok

Najprv musíte tieto čísla rozložiť na hlavné faktory.

  • 60 = 2*2*3*5,
  • 75=3*5*5.

Teraz si zapíšme všetky faktory, ktoré sú v expanzii prvého čísla (2,2,3,5) a pripočítajme k tomu všetky chýbajúce faktory z rozšírenia druhého čísla (5).

V dôsledku toho dostaneme rad prvočísel: 2,2,3,5,5. Súčin týchto čísel bude pre tieto čísla najmenej spoločným faktorom. 2*2*3*5*5 = 300.

Všeobecná schéma na nájdenie najmenšieho spoločného násobku

  • 1. Rozložte čísla na prvočísla.
  • 2. Napíšte hlavné faktory, ktoré sú súčasťou jedného z nich.
  • 3. Pridajte k týmto faktorom všetky, ktoré sú v rozklade zvyšku, ale nie vo vybranom.
  • 4. Nájdite súčin všetkých vypísaných faktorov.

Táto metóda je univerzálna. Dá sa použiť na nájdenie najmenšieho spoločného násobku ľubovoľného počtu prirodzených čísel.

Súvisiace publikácie