Care este coeficientul c în ecuația pătratică? Ecuații cuadratice

5x (x - 4) = 0

5 x = 0 sau x - 4 = 0

x = ± √ 25/4

După ce ați învățat să rezolvați ecuații de gradul întâi, desigur, doriți să lucrați cu alții, în special, cu ecuații de gradul doi, care altfel sunt numite pătratice.

Ecuațiile cuadratice sunt ecuații ca ax² + bx + c = 0, unde variabila este x, numerele sunt a, b, c, unde a nu este egal cu zero.

Dacă într-o ecuație pătratică unul sau celălalt coeficient (c sau b) este egal cu zero, atunci această ecuație va fi clasificată ca o ecuație pătratică incompletă.

Cum se rezolvă o ecuație pătratică incompletă dacă până acum studenții au reușit să rezolve doar ecuații de gradul I? Luați în considerare ecuațiile pătratice incomplete diferite tipuriși modalități simple de a le rezolva.

a) Dacă coeficientul c este egal cu 0 și coeficientul b nu este egal cu zero, atunci ax² + bx + 0 = 0 se reduce la o ecuație de forma ax² + bx = 0.

Pentru a rezolva o astfel de ecuație, trebuie să cunoașteți formula de rezolvare a unei ecuații pătratice incomplete, care constă în factorizarea părții stângi a acesteia și ulterior folosirea condiției ca produsul să fie egal cu zero.

De exemplu, 5x² - 20x = 0. Factorăm partea stângă a ecuației, în timp ce efectuăm operația matematică obișnuită: scoatem factorul comun din paranteze

5x (x - 4) = 0

Folosim condiția ca produsele să fie egale cu zero.

5 x = 0 sau x - 4 = 0

Răspunsul va fi: prima rădăcină este 0; a doua rădăcină este 4.

b) Dacă b = 0, iar termenul liber nu este egal cu zero, atunci ecuația ax ² + 0x + c = 0 se reduce la o ecuație de forma ax ² + c = 0. Ecuațiile se rezolvă în două moduri : a) prin factorizarea polinomului ecuaţiei din partea stângă ; b) folosind proprietăţile rădăcinii pătrate aritmetice. O astfel de ecuație poate fi rezolvată folosind una dintre metodele, de exemplu:

x = ± √ 25/4

x = ± 5/2. Răspunsul va fi: prima rădăcină este 5/2; a doua rădăcină este egală cu - 5/2.

c) Dacă b este egal cu 0 și c este egal cu 0, atunci ax ² + 0 + 0 = 0 se reduce la o ecuație de forma ax ² = 0. Într-o astfel de ecuație x va fi egal cu 0.

După cum puteți vedea, ecuațiile pătratice incomplete nu pot avea mai mult de două rădăcini.

ÎN societatea modernă capacitatea de a efectua operații cu ecuații care conțin o variabilă pătrată poate fi utilă în multe domenii de activitate și este utilizată pe scară largă în practică în dezvoltările științifice și tehnice. Dovada acestui lucru poate fi găsită în proiectarea navelor maritime și fluviale, avioanelor și rachetelor. Folosind astfel de calcule, se determină traiectoriile de mișcare ale unei game largi de corpuri, inclusiv obiecte spațiale. Exemple cu soluție ecuații pătratice sunt utilizate nu numai în prognoza economică, în proiectarea și construcția clădirilor, ci și în cele mai obișnuite circumstanțe cotidiene. Acestea pot fi necesare în drumeții, la evenimente sportive, în magazine la cumpărături și în alte situații foarte frecvente.

Să împărțim expresia în factorii ei componente

Se determină gradul ecuației valoarea maxima gradul variabilei pe care o conține această expresie. Dacă este egală cu 2, atunci o astfel de ecuație se numește pătratică.

Dacă vorbim în limbajul formulelor, atunci expresiile indicate, indiferent de cum arată, pot fi întotdeauna aduse la forma când partea stângă expresia constă din trei termeni. Printre acestea: ax 2 (adică o variabilă pătrat cu coeficientul său), bx (o necunoscută fără pătrat cu coeficientul său) și c (o componentă liberă, adică un număr obișnuit). Toate acestea din partea dreaptă sunt egale cu 0. În cazul în care unui astfel de polinom îi lipsește unul dintre termenii săi constitutivi, cu excepția axei 2, se numește ecuație pătratică incompletă. Exemple cu rezolvarea unor astfel de probleme, valorile variabilelor în care sunt ușor de găsit, ar trebui luate în considerare mai întâi.

Dacă expresia pare că are doi termeni în partea dreaptă, mai precis ax 2 și bx, cel mai simplu mod de a găsi x este prin scoaterea variabilei dintre paranteze. Acum ecuația noastră va arăta astfel: x(ax+b). În continuare, devine evident că fie x=0, fie problema se rezumă la găsirea unei variabile din următoarea expresie: ax+b=0. Acest lucru este dictat de una dintre proprietățile înmulțirii. Regula spune că produsul a doi factori are ca rezultat 0 numai dacă unul dintre ei este zero.

Exemplu

x=0 sau 8x - 3 = 0

Ca rezultat, obținem două rădăcini ale ecuației: 0 și 0,375.

Ecuațiile de acest fel pot descrie mișcarea corpurilor sub influența gravitației, care au început să se miște dintr-un anumit punct luat drept origine a coordonatelor. Aici notația matematică ia următoarea formă: y = v 0 t + gt 2 /2. Înlocuind valorile necesare, echivalând partea dreaptă cu 0 și găsind posibile necunoscute, puteți afla timpul care trece din momentul în care corpul se ridică până în momentul în care acesta cade, precum și multe alte cantități. Dar despre asta vom vorbi mai târziu.

Factorizarea unei expresii

Regula descrisă mai sus face posibilă rezolvarea acestor probleme în cazuri mai complexe. Să ne uităm la exemple de rezolvare a ecuațiilor pătratice de acest tip.

X 2 - 33x + 200 = 0

Acest trinom pătratic este complet. Mai întâi, să transformăm expresia și să o factorizăm. Sunt două dintre ele: (x-8) și (x-25) = 0. Ca rezultat, avem două rădăcini 8 și 25.

Exemplele cu rezolvarea ecuațiilor pătratice din clasa a 9-a permit acestei metode să găsească o variabilă în expresii nu numai de ordinul doi, ci chiar de ordinul al treilea și al patrulea.

De exemplu: 2x 3 + 2x 2 - 18x - 18 = 0. La factorizarea părții drepte în factori cu o variabilă, există trei dintre ei, adică (x+1), (x-3) și (x+). 3).

Ca urmare, devine evident că această ecuație are trei rădăcini: -3; -1; 3.

Rădăcină pătrată

Un alt caz ecuație incompletă al doilea ordin este o expresie reprezentată în limbajul literelor în așa fel încât partea dreaptă este construit din componentele ax 2 si c. Aici, pentru a obține valoarea variabilei, termenul liber este transferat în partea dreaptă, iar după aceea, este extras din ambele părți ale egalității rădăcină pătrată. Trebuie remarcat faptul că în în acest caz, Există de obicei două rădăcini ale ecuației. Singurele excepții pot fi egalitățile care nu conțin deloc un termen cu, unde variabila este egală cu zero, precum și variantele de expresii când partea dreaptă se dovedește a fi negativă. În acest din urmă caz, nu există deloc soluții, deoarece acțiunile de mai sus nu pot fi efectuate cu rădăcini. Ar trebui luate în considerare exemple de soluții la ecuații pătratice de acest tip.

În acest caz, rădăcinile ecuației vor fi numerele -4 și 4.

Calculul suprafeței terenului

Necesitatea acestui gen de calcule a apărut în antichitate, deoarece dezvoltarea matematicii în acele vremuri îndepărtate a fost determinată în mare măsură de necesitatea de a determina cu cea mai mare acuratețe suprafețele și perimetrele terenurilor.

De asemenea, ar trebui să luăm în considerare exemple de rezolvare a ecuațiilor pătratice bazate pe probleme de acest gen.

Deci, să presupunem că există un teren dreptunghiular, a cărui lungime este cu 16 metri mai mare decât lățimea. Ar trebui să găsiți lungimea, lățimea și perimetrul sitului dacă știți că suprafața acestuia este de 612 m2.

Pentru a începe, să creăm mai întâi ecuația necesară. Să notăm cu x lățimea zonei, atunci lungimea acesteia va fi (x+16). Din cele scrise rezultă că aria este determinată de expresia x(x+16), care, conform condițiilor problemei noastre, este 612. Aceasta înseamnă că x(x+16) = 612.

Rezolvarea ecuațiilor pătratice complete, iar această expresie este exact aceea, nu se poate face în același mod. De ce? Deși partea stângă conține încă doi factori, produsul lor nu este deloc egal cu 0, așa că aici sunt folosite metode diferite.

Discriminant

În primul rând, să facem, atunci, transformările necesare aspect a acestei expresii va arăta astfel: x 2 + 16x - 612 = 0. Aceasta înseamnă că am primit o expresie într-o formă corespunzătoare standardului specificat anterior, unde a=1, b=16, c=-612.

Acesta ar putea fi un exemplu de rezolvare a ecuațiilor pătratice folosind un discriminant. Aici calculele necesare sunt produse după schema: D = b 2 - 4ac. Această mărime auxiliară nu numai că face posibilă găsirea cantităților necesare într-o ecuație de ordinul doi, ci determină cantitatea opțiuni posibile. Dacă D>0, sunt două dintre ele; pentru D=0 există o rădăcină. În cazul D<0, никаких шансов для решения у уравнения вообще не имеется.

Despre rădăcini și formula lor

În cazul nostru, discriminantul este egal cu: 256 - 4(-612) = 2704. Acest lucru sugerează că problema noastră are un răspuns. Dacă cunoașteți k, soluția ecuațiilor pătratice trebuie continuată folosind formula de mai jos. Vă permite să calculați rădăcinile.

Aceasta înseamnă că în cazul prezentat: x 1 =18, x 2 =-34. A doua opțiune în această dilemă nu poate fi o soluție, deoarece dimensiunile terenului nu pot fi măsurate în cantități negative, ceea ce înseamnă că x (adică lățimea parcelei) este de 18 m. De aici calculăm lungimea: 18 +16=34, iar perimetrul 2(34+ 18)=104(m2).

Exemple și sarcini

Continuăm studiul ecuațiilor pătratice. Exemple și soluții detaliate ale mai multor dintre ele vor fi date mai jos.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Să mutam totul în partea stângă a egalității, să facem o transformare, adică vom obține tipul de ecuație care se numește de obicei standard și o vom echivala cu zero.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Adăugând altele similare, determinăm discriminantul: D = 49 - 48 = 1. Aceasta înseamnă că ecuația noastră va avea două rădăcini. Să le calculăm conform formulei de mai sus, ceea ce înseamnă că primul dintre ele va fi egal cu 4/3, iar al doilea cu 1.

2) Acum să rezolvăm mistere de alt fel.

Să aflăm dacă există rădăcini aici x 2 - 4x + 5 = 1? Pentru a obține un răspuns cuprinzător, să reducem polinomul la forma obișnuită corespunzătoare și să calculăm discriminantul. În exemplul de mai sus, nu este necesar să se rezolve ecuația pătratică, deoarece aceasta nu este deloc esența problemei. În acest caz, D = 16 - 20 = -4, ceea ce înseamnă că într-adevăr nu există rădăcini.

teorema lui Vieta

Este convenabil să se rezolve ecuații pătratice folosind formulele de mai sus și discriminantul, atunci când rădăcina pătrată este luată din valoarea acestuia din urmă. Dar acest lucru nu se întâmplă întotdeauna. Cu toate acestea, există multe modalități de a obține valorile variabilelor în acest caz. Exemplu: rezolvarea ecuațiilor pătratice folosind teorema lui Vieta. Ea poartă numele unei persoane care a trăit în Franța din secolul al XVI-lea și a făcut o carieră strălucitoare datorită talentului său matematic și a legăturilor sale la curte. Portretul lui poate fi văzut în articol.

Modelul pe care l-a observat celebrul francez a fost următorul. El a demonstrat că rădăcinile ecuației se adună numeric la -p=b/a, iar produsul lor corespunde cu q=c/a.

Acum să ne uităm la sarcini specifice.

3x 2 + 21x - 54 = 0

Pentru simplitate, să transformăm expresia:

x 2 + 7x - 18 = 0

Să folosim teorema lui Vieta, aceasta ne va da următoarele: suma rădăcinilor este -7, iar produsul lor este -18. De aici obținem că rădăcinile ecuației sunt numerele -9 și 2. După verificare, ne vom asigura că aceste valori variabile se potrivesc cu adevărat în expresie.

Graficul parabolei și ecuația

Conceptele de funcție pătratică și ecuații pătratice sunt strâns legate. Exemple în acest sens au fost deja date mai devreme. Acum să ne uităm la câteva ghicitori matematice mai detaliat. Orice ecuație de tipul descris poate fi reprezentată vizual. O astfel de relație, desenată sub formă de grafic, se numește parabolă. Diferitele sale tipuri sunt prezentate în figura de mai jos.

Orice parabolă are un vârf, adică un punct din care ies ramurile sale. Dacă a>0, ele cresc la infinit, iar când a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Reprezentările vizuale ale funcțiilor ajută la rezolvarea oricăror ecuații, inclusiv a celor pătratice. Această metodă se numește grafică. Iar valoarea variabilei x este coordonata abscisă în punctele în care linia graficului se intersectează cu 0x. Coordonatele vârfului pot fi găsite folosind formula tocmai dată x 0 = -b/2a. Și înlocuind valoarea rezultată în ecuația inițială a funcției, puteți afla y 0, adică a doua coordonată a vârfului parabolei, care aparține axei ordonatelor.

Intersecția ramurilor unei parabole cu axa absciselor

Există o mulțime de exemple de rezolvare a ecuațiilor pătratice, dar există și modele generale. Să ne uităm la ele. Este clar că intersecția graficului cu axa 0x pentru a>0 este posibilă numai dacă y 0 ia valori negative. Și pentru a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Altfel D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Din graficul parabolei puteți determina și rădăcinile. Este adevărat și contrariul. Adică, dacă nu este ușor să obțineți o reprezentare vizuală a unei funcții pătratice, puteți echivala partea dreaptă a expresiei cu 0 și rezolvați ecuația rezultată. Și cunoscând punctele de intersecție cu axa 0x, este mai ușor să construiești un grafic.

Din istorie

Folosind ecuații care conțin o variabilă pătrată, pe vremuri nu numai că făceau calcule matematice și determinau ariile figurilor geometrice. Anticii aveau nevoie de astfel de calcule pentru marile descoperiri în domeniul fizicii și astronomiei, precum și pentru a face prognoze astrologice.

După cum sugerează oamenii de știință moderni, locuitorii Babilonului au fost printre primii care au rezolvat ecuații patratice. Acest lucru s-a întâmplat cu patru secole înaintea erei noastre. Desigur, calculele lor erau radical diferite de cele acceptate în prezent și s-au dovedit a fi mult mai primitive. De exemplu, matematicienii mesopotamieni nu aveau idee despre existența numerelor negative. De asemenea, nu erau familiarizați cu alte subtilități pe care orice școlar modern le cunoaște.

Poate chiar mai devreme decât oamenii de știință din Babilon, înțeleptul din India Baudhayama a început să rezolve ecuații patratice. Acest lucru s-a întâmplat cu aproximativ opt secole înainte de era lui Hristos. Adevărat, ecuațiile de ordinul doi, metodele de rezolvare pe care le-a dat, erau cele mai simple. Pe lângă el, matematicienii chinezi erau și ei interesați de întrebări similare pe vremuri. În Europa, ecuațiile pătratice au început să fie rezolvate abia la începutul secolului al XIII-lea, dar mai târziu au fost folosite în lucrările lor de oameni de știință atât de mari precum Newton, Descartes și mulți alții.

Utilizarea ecuațiilor este larg răspândită în viața noastră. Ele sunt folosite în multe calcule, construcție de structuri și chiar sport. Omul a folosit ecuații în antichitate, iar de atunci utilizarea lor a crescut. Discriminantul vă permite să rezolvați orice ecuație pătratică folosind o formulă generală, care are următoarea formă:

Formula discriminantă depinde de gradul polinomului. Formula de mai sus este potrivită pentru rezolvarea ecuațiilor pătratice de următoarea formă:

Discriminantul are următoarele proprietăți pe care trebuie să le cunoașteți:

* „D” este 0 când polinomul are rădăcini multiple (rădăcini egale);

* „D” este un polinom simetric în raport cu rădăcinile polinomului și, prin urmare, este un polinom în coeficienții săi; mai mult, coeficienții acestui polinom sunt numere întregi indiferent de extensia în care sunt luate rădăcinile.

Să presupunem că ni se oferă o ecuație pătratică de următoarea formă:

1 ecuație

După formula avem:

Deoarece \, ecuația are 2 rădăcini. Să le definim:

Unde pot rezolva o ecuație folosind un rezolvator online discriminant?

Puteți rezolva ecuația pe site-ul nostru https://site. Rezolvatorul online gratuit vă va permite să rezolvați ecuații online de orice complexitate în câteva secunde. Tot ce trebuie să faceți este să introduceți pur și simplu datele dvs. în soluție. De asemenea, puteți viziona instrucțiunile video și aflați cum să rezolvați ecuația pe site-ul nostru Iar dacă aveți întrebări, le puteți adresa în grupul nostru VKontakte http://vk.com/pocketteacher. Alătură-te grupului nostru, suntem mereu bucuroși să te ajutăm.

Transformarea unei ecuații pătratice complete într-una incompletă arată astfel (pentru cazul \(b=0\)):

Pentru cazurile în care \(c=0\) sau când ambii coeficienți sunt egali cu zero, totul este similar.

Vă rugăm să rețineți că nu se pune problema ca \(a\) să fie egal cu zero nu poate fi egal cu zero, deoarece în acest caz se va transforma în:

Rezolvarea ecuațiilor pătratice incomplete.

În primul rând, trebuie să înțelegeți că o ecuație pătratică incompletă este încă o , și, prin urmare, poate fi rezolvată în același mod ca o ecuație pătratică obișnuită (prin ). Pentru a face acest lucru, adăugăm pur și simplu componenta lipsă a ecuației cu un coeficient zero.

Exemplu : Găsiți rădăcinile ecuației \(3x^2-27=0\)
Soluţie :

Avem o ecuație pătratică incompletă cu coeficientul \(b=0\). Adică, putem scrie ecuația după cum urmează:

\(3x^2+0\cdot x-27=0\)

De fapt, aceasta este aceeași ecuație ca la început, dar acum poate fi rezolvată ca una pătratică obișnuită. Mai întâi scriem coeficienții.

\(a=3;\) \(b=0;\) \(c=-27;\)

Să calculăm discriminantul folosind formula \(D=b^2-4ac\)

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Să găsim rădăcinile ecuației folosind formulele
\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) și \(x_(2)=\)\(\frac(-b-\sqrt(D)) )(2a)\)

\(x_(1)=\) \(\frac(-0+\sqrt(324))(2\cdot3)\)\(=\)\(\frac(18)(6)\) \(=3\)

\(x_(2)=\) \(\frac(-0-\sqrt(324))(2\cdot3)\)\(=\)\(\frac(-18)(6)\) \(=-3\)


Scrieți răspunsul

Răspuns : \(x_(1)=3\); \(x_(2)=-3\)


Exemplu : Găsiți rădăcinile ecuației \(-x^2+x=0\)
Soluţie :

Din nou o ecuație pătratică incompletă, dar acum coeficientul \(c\) este egal cu zero. Scriem ecuația ca fiind completă.

Să lucrăm cu ecuații pătratice. Acestea sunt ecuații foarte populare! În forma sa cea mai generală, o ecuație pătratică arată astfel:

De exemplu:

Aici O =1; b = 3; c = -4

Aici O =2; b = -0,5; c = 2,2

Aici O =-3; b = 6; c = -18

Ei bine, înțelegi...

Cum se rezolvă ecuații pătratice? Dacă aveți în față o ecuație pătratică sub această formă, atunci totul este simplu. Amintește-ți cuvântul magic discriminant . Rareori un elev de liceu nu a auzit acest cuvânt! Expresia „rezolvăm printr-un discriminant” inspiră încredere și liniște. Pentru că nu trebuie să vă așteptați la trucuri de la discriminant! Este simplu și fără probleme de utilizat. Deci, formula pentru găsirea rădăcinilor unei ecuații pătratice arată astfel:

Expresia de sub semnul rădăcinii este cea discriminant. După cum puteți vedea, pentru a găsi X, folosim doar a, b și c. Aceste. coeficienții dintr-o ecuație pătratică. Doar înlocuiți cu atenție valorile a, b și c Aceasta este formula pe care o calculăm. Să înlocuim cu semnele tale! De exemplu, pentru prima ecuație O =1; b = 3; c= -4. Aici o scriem:

Exemplul este aproape rezolvat:

Asta este.

Ce cazuri sunt posibile când se utilizează această formulă? Sunt doar trei cazuri.

1. Discriminantul este pozitiv. Aceasta înseamnă că rădăcina poate fi extrasă din ea. Dacă rădăcina este extrasă bine sau prost este o altă întrebare. Important este ceea ce se extrage în principiu. Atunci ecuația ta pătratică are două rădăcini. Două soluții diferite.

2. Discriminantul este zero. Atunci ai o soluție. Strict vorbind, aceasta nu este o singură rădăcină, ci două identice. Dar acest lucru joacă un rol în inegalități, unde vom studia problema mai detaliat.

3. Discriminantul este negativ. Rădăcina pătrată a unui număr negativ nu poate fi luată. Oh bine. Asta înseamnă că nu există soluții.

Este foarte simplu. Și ce, crezi că este imposibil să faci o greșeală? Ei bine, da, cum...
Cele mai frecvente greșeli sunt confuzia cu valorile semnelor a, b și c. Sau, mai degrabă, nu cu semnele lor (unde să vă confundați?), ci cu înlocuirea valorilor negative în formula de calcul a rădăcinilor. Ceea ce ajută aici este o înregistrare detaliată a formulei cu numere specifice. Dacă există probleme cu calculele, face asta!



Să presupunem că trebuie să rezolvăm următorul exemplu:

Aici a = -6; b = -5; c = -1

Să presupunem că știi că rar primești răspunsuri prima dată.

Ei bine, nu fi leneș. Va dura aproximativ 30 de secunde pentru a scrie o linie suplimentară și numărul de erori va scădea brusc. Așa că scriem în detaliu, cu toate parantezele și semnele:

Pare incredibil de dificil să scrii cu atâta atenție. Dar doar așa pare. Încearcă. Ei bine, sau alege. Ce e mai bine, rapid sau corect? În plus, te voi face fericit. După un timp, nu va mai fi nevoie să scrieți totul atât de atent. Se va rezolva chiar de la sine. Mai ales dacă utilizați tehnici practice care sunt descrise mai jos. Acest exemplu rău cu o grămadă de minusuri poate fi rezolvat ușor și fără erori!

Aşa, cum se rezolvă ecuații pătratice prin discriminantul de care ne-am amintit. Sau au învățat, ceea ce este și bine. Știți să determinați corect a, b și c. știi cum? atentînlocuiți-le în formula rădăcină și atent numărați rezultatul. Înțelegi că cuvântul cheie aici este atent?

Cu toate acestea, ecuațiile pătratice arată adesea ușor diferit. De exemplu, așa:

Acest ecuații pătratice incomplete . Ele pot fi rezolvate și printr-un discriminant. Trebuie doar să înțelegeți corect cu ce sunt ele egale aici. a, b și c.

Ți-ai dat seama? În primul exemplu a = 1; b = -4; O c? Nu este deloc acolo! Ei bine, da, așa este. În matematică asta înseamnă că c = 0 ! Asta este. În schimb, înlocuiți zero în formulă c, si vom reusi. La fel si cu al doilea exemplu. Numai că nu avem zero aici Cu, A b !

Dar ecuațiile pătratice incomplete pot fi rezolvate mult mai simplu. Fără nicio discriminare. Să luăm în considerare prima ecuație incompletă. Ce poți face în partea stângă? Puteți scoate X din paranteze! Hai să-l scoatem.

Deci ce-i cu asta? Și faptul că produsul este egal cu zero dacă și numai dacă oricare dintre factori este egal cu zero! Nu mă crezi? Bine, atunci veniți cu două numere diferite de zero care, atunci când sunt înmulțite, vor da zero!
Nu merge? Asta este...
Prin urmare, putem scrie cu încredere: x = 0, sau x = 4

Toate. Acestea vor fi rădăcinile ecuației noastre. Ambele sunt potrivite. Când înlocuim oricare dintre ele în ecuația originală, obținem identitatea corectă 0 = 0. După cum puteți vedea, soluția este mult mai simplă decât utilizarea unui discriminant.

A doua ecuație poate fi rezolvată și simplu. Mutați 9 în partea dreaptă. Primim:

Tot ce rămâne este să extragi rădăcina din 9 și atât. Se va dovedi:

De asemenea, două rădăcini . x = +3 și x = -3.

Așa se rezolvă toate ecuațiile pătratice incomplete. Fie plasând X dintre paranteze, fie pur și simplu deplasând numărul la dreapta și apoi extragând rădăcina.
Este extrem de greu de confundat aceste tehnici. Pur și simplu pentru că în primul caz va trebui să extragi rădăcina lui X, care este cumva de neînțeles, iar în al doilea caz nu este nimic de scos din paranteze...

Acum luați notă de tehnicile practice care reduc dramatic numărul de erori. Aceleași care se datorează neatenției... Pentru care ulterior devine dureros și jignitor...

Prima numire. Nu fi leneș înainte de a rezolva o ecuație pătratică și aduce-o la forma standard. Ce înseamnă acest lucru?
Să presupunem că după toate transformările obținem următoarea ecuație:

Nu vă grăbiți să scrieți formula rădăcină! Aproape sigur vei amesteca șansele a, b și c. Construiți corect exemplul. Mai întâi, X pătrat, apoi fără pătrat, apoi termenul liber. Ca aceasta:

Și din nou, nu te grăbi! Un minus în fața unui X pătrat te poate supăra cu adevărat. E usor sa uiti... Scapa de minus. Cum? Da, așa cum a fost predat în subiectul anterior! Trebuie să înmulțim întreaga ecuație cu -1. Primim:

Dar acum puteți scrie în siguranță formula rădăcinilor, puteți calcula discriminantul și puteți termina de rezolvat exemplul. Decide pentru tine. Acum ar trebui să aveți rădăcinile 2 și -1.

Recepție secundă. Verificați rădăcinile! Conform teoremei lui Vieta. Nu vă fie teamă, vă explic totul! Control dura ecuaţie. Aceste. cea pe care o folosim pentru a scrie formula rădăcinii. Dacă (ca în acest exemplu) coeficientul a = 1, verificarea rădăcinilor este ușoară. Este suficient să le înmulțim. Rezultatul ar trebui să fie un membru liber, adică. în cazul nostru -2. Vă rugăm să rețineți, nu 2, ci -2! Membru gratuit cu semnul tău . Dacă nu funcționează, înseamnă că s-au încurcat deja undeva. Căutați eroarea. Dacă funcționează, trebuie să adăugați rădăcinile. Ultima si ultima verificare. Coeficientul ar trebui să fie b Cu opus familiar. În cazul nostru -1+2 = +1. Un coeficient b, care este înaintea lui X, este egal cu -1. Deci, totul este corect!
Este păcat că acest lucru este atât de simplu doar pentru exemplele în care x pătrat este pur, cu un coeficient a = 1. Dar măcar verificați astfel de ecuații! Vor fi din ce în ce mai puține erori.

Recepția a treia. Dacă ecuația ta are coeficienți fracționali, scapă de fracții! Înmulțiți ecuația cu un numitor comun, așa cum este descris în secțiunea anterioară. Când lucrați cu fracții, erorile continuă să apară din anumite motive...

Apropo, am promis că voi simplifica exemplul malefic cu o grămadă de minusuri. Vă rog! Iată-l.

Pentru a nu ne confunda cu minusurile, înmulțim ecuația cu -1. Primim:

Asta este! Rezolvarea este o plăcere!

Deci, haideți să rezumam subiectul.

Sfaturi practice:

1. Înainte de a rezolva, aducem ecuația pătratică la forma standard și o construim Corect.

2. Dacă în fața pătratului X există un coeficient negativ, îl eliminăm înmulțind întreaga ecuație cu -1.

3. Dacă coeficienții sunt fracționali, eliminăm fracțiile înmulțind întreaga ecuație cu factorul corespunzător.

4. Dacă x pătrat este pur, coeficientul său este egal cu unu, soluția poate fi ușor verificată folosind teorema lui Vieta. Fă-o!

Ecuații fracționale. ODZ.

Continuăm să stăpânim ecuațiile. Știm deja cum să lucrăm cu ecuații liniare și pătratice. Ultima vedere rămasă - ecuații fracționale. Sau sunt numite și mult mai respectabil - ecuații raționale fracționale. Este același lucru.

Ecuații fracționale.

După cum sugerează și numele, aceste ecuații conțin în mod necesar fracții. Dar nu doar fracții, ci fracții care au necunoscut la numitor. Cel puțin într-una. De exemplu:

Permiteți-mi să vă reamintesc că dacă numitorii sunt numai numere, acestea sunt ecuații liniare.

Cum să decizi ecuații fracționale? În primul rând, scapă de fracții! După aceasta, ecuația se transformă cel mai adesea în liniară sau pătratică. Și atunci știm ce să facem... În unele cazuri se poate transforma într-o identitate, cum ar fi 5=5 sau o expresie incorectă, precum 7=2. Dar asta se întâmplă rar. Voi aminti asta mai jos.

Dar cum să scapi de fracții!? Foarte simplu. Aplicând aceleași transformări identice.

Trebuie să înmulțim întreaga ecuație cu aceeași expresie. Ca să se reducă toți numitorii! Totul va deveni imediat mai ușor. Să explic cu un exemplu. Trebuie să rezolvăm ecuația:

Cum ai fost predat în școala elementară? Mutăm totul într-o parte, îl aducem la un numitor comun etc. Uită-l ca pe un vis urât! Acesta este ceea ce trebuie să faceți când adăugați sau scădeți fracții. Sau lucrezi cu inegalități. Și în ecuații, înmulțim imediat ambele părți cu o expresie care ne va oferi posibilitatea de a reduce toți numitorii (adică, în esență, cu un numitor comun). Și care este această expresie?

În partea stângă, reducerea numitorului necesită înmulțirea cu x+2. Și în dreapta, este necesară înmulțirea cu 2 Aceasta înseamnă că ecuația trebuie înmulțită cu 2(x+2). Multiplica:

Aceasta este o multiplicare comună a fracțiilor, dar o voi descrie în detaliu:

Vă rugăm să rețineți că încă nu deschid suportul (x + 2)! Deci, în întregime, o scriu:

Pe partea stângă se contractă în întregime (x+2), iar în dreapta 2. Care este ceea ce s-a cerut! După reducere obținem liniar ecuaţie:

Și toată lumea poate rezolva această ecuație! x = 2.

Să rezolvăm un alt exemplu, puțin mai complicat:

Dacă ne amintim că 3 = 3/1, și 2x = 2x/ 1, putem scrie:

Și din nou scăpăm de ceea ce nu ne place cu adevărat - fracții.

Vedem că pentru a reduce numitorul cu X, trebuie să înmulțim fracția cu (x – 2). Și câteva nu sunt o piedică pentru noi. Ei bine, hai să ne înmulțim. Toate partea stângă și toate partea dreapta:

Din nou paranteze (x – 2) Nu dezvălui. Lucrez cu paranteza ca un întreg ca și cum ar fi un număr! Acest lucru trebuie făcut întotdeauna, altfel nimic nu va fi redus.

Cu un sentiment de profundă satisfacție reducem (x – 2)și obținem o ecuație fără fracții, cu o riglă!

Acum să deschidem parantezele:

Aducem altele asemănătoare, mutam totul în partea stângă și obținem:

Ecuație pătratică clasică. Dar minusul din față nu este bun. Puteți scăpa oricând de el înmulțind sau împărțind cu -1. Dar dacă te uiți cu atenție la exemplu, vei observa că cel mai bine este să împărțiți această ecuație la -2! Într-o singură lovitură, minusul va dispărea, iar șansele vor deveni mai atractive! Împărțiți la -2. În partea stângă - termen cu termen, iar în dreapta - pur și simplu împărțim zero la -2, zero și obținem:

Rezolvăm prin discriminant și verificăm folosind teorema lui Vieta. Primim x = 1 și x = 3. Două rădăcini.

După cum puteți vedea, în primul caz, ecuația de după transformare a devenit liniară, dar aici devine pătratică. Se întâmplă ca, după ce scăpați de fracții, toate X-urile să fie reduse. Rămâne ceva, ca 5=5. Aceasta înseamnă că x poate fi orice. Orice ar fi, tot va fi redus. Și se dovedește a fi adevăr pur, 5=5. Dar, după ce scăpați de fracții, se poate dovedi a fi complet neadevărat, cum ar fi 2=7. Și asta înseamnă că fara solutii! Orice X se dovedește a fi neadevărat.

Am realizat soluția principală ecuații fracționale? Este simplu și logic. Schimbăm expresia originală, astfel încât tot ce nu ne place să dispară. Sau interferează. În acest caz, acestea sunt fracții. Vom face același lucru cu tot felul de exemple complexe cu logaritmi, sinusuri și alte orori. Noi Întotdeauna Să scăpăm de toate acestea.

Cu toate acestea, trebuie să schimbăm expresia originală în direcția de care avem nevoie conform regulilor, da... A cărui stăpânire este pregătirea pentru Examenul Unificat de Stat la matematică. Așa că o stăpânim.

Acum vom învăța cum să ocolim unul dintre principalele ambuscade la examenul de stat unificat! Dar mai întâi, să vedem dacă ai căzut în asta sau nu?

Să ne uităm la un exemplu simplu:

Problema este deja familiară, înmulțim ambele părți cu (x – 2), obținem:

Vă reamintesc, cu paranteze (x – 2) Lucrăm parcă cu o singură expresie integrală!

Aici nu am mai scris unul la numitori, e nedemn... Si nu am tras paranteze la numitori, cu exceptia x – 2 nu există nimic, nu trebuie să desenezi. Să scurtăm:

Deschideți parantezele, mutați totul spre stânga și dați altele similare:

Rezolvăm, verificăm, obținem două rădăcini. x = 2Şi x = 3. Mare.

Să presupunem că sarcina spune să scrieți rădăcina sau suma lor dacă există mai multe rădăcini. Ce vom scrie?

Dacă decizi că răspunsul este 5, tu au fost pândiți în ambuscadă. Și sarcina nu vă va fi creditată. Au lucrat degeaba... Răspunsul corect este 3.

Ce s-a întâmplat?! Și încerci să faci o verificare. Înlocuiți valorile necunoscutului în original exemplu. Și dacă la x = 3 totul va crește împreună minunat, obținem 9 = 9, apoi când x = 2 Va fi împărțire cu zero! Ceea ce absolut nu poți face. Mijloace x = 2 nu este o soluție și nu este luată în considerare în răspuns. Aceasta este așa-numita rădăcină străină sau suplimentară. Pur și simplu îl aruncăm. Rădăcina finală este una. x = 3.

Cum așa?! – Aud exclamații indignate. Am fost învățați că o ecuație poate fi înmulțită cu o expresie! Aceasta este o transformare identică!

Da, identic. Sub o condiție mică - expresia prin care înmulțim (împărțim) - diferit de zero. O x – 2 la x = 2 este egal cu zero! Deci totul este corect.

Deci ce ar trebui să facem acum?! Nu înmulți prin expresie? Ar trebui să verific de fiecare dată? Din nou, nu este clar!

Calm! Nu vă panicați!

În această situație dificilă, trei litere magice ne vor salva. Știu la ce te gândești. Corect! Acest ODZ . Zona valorilor acceptabile.

Publicații pe această temă