Logaritmul logaritmului este egal cu. Definiția logaritmului, identitatea logaritmică de bază

Deci, avem puteri de doi. Dacă luați numărul din linia de jos, puteți găsi cu ușurință puterea la care va trebui să ridicați doi pentru a obține acest număr. De exemplu, pentru a obține 16, trebuie să ridicați doi la a patra putere. Și pentru a obține 64, trebuie să ridici doi la a șasea putere. Acest lucru se vede din tabel.

Și acum - de fapt, definiția logaritmului:

Baza a logaritmului lui x este puterea la care trebuie ridicat a pentru a obține x.

Denumire: log a x = b, unde a este baza, x este argumentul, b este ceea ce este de fapt egal cu logaritmul.

De exemplu, 2 3 = 8 ⇒ log 2 8 = 3 (logaritmul de bază 2 al lui 8 este trei deoarece 2 3 = 8). Cu același log de succes 2 64 = 6, deoarece 2 6 = 64.

Operația de găsire a logaritmului unui număr la o bază dată se numește logaritmizare. Deci, să adăugăm o nouă linie la tabelul nostru:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1log 2 4 = 2 log 2 8 = 3log 2 16 = 4 log 2 32 = 5log 2 64 = 6

Din păcate, nu toți logaritmii se calculează atât de ușor. De exemplu, încercați să găsiți log 2 5 . Numărul 5 nu este în tabel, dar logica dictează că logaritmul va fi undeva pe segment. Pentru că 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Astfel de numere se numesc iraționale: numerele de după virgulă pot fi scrise la infinit și nu se repetă niciodată. Dacă logaritmul se dovedește a fi irațional, este mai bine să îl lăsați așa: log 2 5, log 3 8, log 5 100.

Este important să înțelegem că un logaritm este o expresie cu două variabile (baza și argumentul). La început, mulți oameni confundă unde este baza și unde este argumentul. Pentru a evita neînțelegeri enervante, uita-te doar la poza:

În fața noastră nu este nimic altceva decât definiția unui logaritm. Amintiți-vă: logaritmul este o putere, în care trebuie construită baza pentru a obține un argument. Este baza care este ridicată la o putere - este evidențiată cu roșu în imagine. Se dovedește că baza este întotdeauna în jos! Le spun studenților mei această regulă minunată chiar de la prima lecție - și nu apare nicio confuzie.

Ne-am dat seama de definiție - tot ce rămâne este să învățăm cum să numărăm logaritmii, de exemplu. scapă de semnul „bușten”. Pentru început, observăm că din definiție rezultă două fapte importante:

  1. Argumentul și baza trebuie să fie întotdeauna mai mari decât zero. Aceasta rezultă din definirea unui grad de către un exponent rațional, la care se reduce definiția unui logaritm.
  2. Baza trebuie să fie diferită de unul, deoarece unul în orice grad rămâne unul. Din această cauză, întrebarea „la ce putere trebuie ridicat cineva pentru a obține doi” este lipsită de sens. Nu există o astfel de diplomă!

Se numesc astfel de restricții intervalul de valori acceptabile(ODZ). Rezultă că ODZ a logaritmului arată astfel: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Rețineți că nu există restricții privind numărul b (valoarea logaritmului). De exemplu, logaritmul poate fi foarte negativ: log 2 0.5 = −1, deoarece 0,5 = 2 −1.

Totuși, acum luăm în considerare doar expresii numerice, unde nu este necesar să cunoaștem VA logaritmului. Toate restricțiile au fost deja luate în considerare de către autorii sarcinilor. Dar atunci când ecuațiile și inegalitățile logaritmice intră în joc, cerințele DL vor deveni obligatorii. La urma urmei, baza și argumentul pot conține construcții foarte puternice care nu corespund neapărat restricțiilor de mai sus.

Acum să luăm în considerare schema generala calcularea logaritmilor. Acesta constă din trei etape:

  1. Exprimați baza a și argumentul x ca o putere cu baza minimă posibilă mai mare decât unu. Pe parcurs, este mai bine să scapi de zecimale;
  2. Rezolvați ecuația pentru variabila b: x = a b ;
  3. Numărul rezultat b va fi răspunsul.

Asta este! Dacă logaritmul se dovedește a fi irațional, acesta va fi vizibil deja în primul pas. Cerința ca baza să fie mai mare decât unu este foarte importantă: aceasta reduce probabilitatea de eroare și simplifică foarte mult calculele. La fel cu zecimale: dacă le convertiți imediat în cele obișnuite, vor fi mult mai puține erori.

Să vedem cum funcționează această schemă folosind exemple specifice:

Sarcină. Calculați logaritmul: log 5 25

  1. Să ne imaginăm baza și argumentul ca o putere a lui cinci: 5 = 5 1 ; 25 = 5 2 ;
  2. Să creăm și să rezolvăm ecuația:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Am primit răspunsul: 2.

Sarcină. Calculați logaritmul:

Sarcină. Calculați logaritmul: log 4 64

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 4 = 2 2 ; 64 = 2 6 ;
  2. Să creăm și să rezolvăm ecuația:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Am primit răspunsul: 3.

Sarcină. Calculați logaritmul: log 16 1

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 16 = 2 4 ; 1 = 2 0 ;
  2. Să creăm și să rezolvăm ecuația:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Am primit raspunsul: 0.

Sarcină. Calculați logaritmul: log 7 14

  1. Să ne imaginăm baza și argumentul ca o putere a lui șapte: 7 = 7 1 ; 14 nu poate fi reprezentat ca o putere a șapte, deoarece 7 1< 14 < 7 2 ;
  2. Din paragraful anterior rezultă că logaritmul nu contează;
  3. Răspunsul este fără schimbare: log 7 14.

O mică notă pentru ultimul exemplu. Cum poți fi sigur că un număr nu este o putere exactă a altui număr? Este foarte simplu - doar includeți-l în factori primi. Dacă expansiunea are cel puțin doi factori diferiți, numărul nu este o putere exactă.

Sarcină. Aflați dacă numerele sunt puteri exacte: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - grad exact, deoarece există un singur multiplicator;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nu este o putere exactă, întrucât există doi factori: 3 și 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - grad exact;
35 = 7 · 5 - din nou nu este o putere exactă;
14 = 7 · 2 - din nou nu este un grad exact;

Să remarcăm, de asemenea, că noi înșine numere prime sunt întotdeauna grade exacte ale lor.

Logaritm zecimal

Unii logaritmi sunt atât de comune încât au un nume și un simbol special.

Logaritmul zecimal al lui x este logaritmul la baza 10, adică. Puterea la care trebuie ridicat numărul 10 pentru a obține numărul x. Denumire: lg x.

De exemplu, log 10 = 1; lg 100 = 2; lg 1000 = 3 - etc.

De acum înainte, când o expresie precum „Găsiți lg 0.01” apare într-un manual, să știți că aceasta nu este o greșeală de tipar. Acesta este un logaritm zecimal. Cu toate acestea, dacă nu sunteți familiarizat cu această notație, o puteți rescrie oricând:
log x = log 10 x

Tot ceea ce este adevărat pentru logaritmii obișnuiți este valabil și pentru logaritmii zecimali.

Logaritmul natural

Există un alt logaritm care are propria sa denumire. În unele privințe, este chiar mai important decât zecimală. Vorbim despre logaritmul natural.

Logaritmul natural al lui x este logaritmul la baza e, i.e. puterea la care trebuie ridicat numărul e pentru a obține numărul x. Denumire: ln x .

Mulți se vor întreba: care este numărul e? Acest număr irațional, al lui valoarea exacta imposibil de găsit și înregistrat. Voi da doar primele cifre:
e = 2,718281828459...

Nu vom intra în detaliu despre ce este acest număr și de ce este necesar. Nu uitați doar că e este baza logaritmului natural:
ln x = log e x

Astfel ln e = 1 ; ln e 2 = 2; ln e 16 = 16 - etc. Pe de altă parte, ln 2 este un număr irațional. Deloc, logaritmul natural orice număr rațional este irațional. Cu excepția, desigur, a unuia: ln 1 = 0.

Pentru logaritmii naturali, toate regulile care sunt adevărate pentru logaritmii obișnuiți sunt valabile.

După cum știți, atunci când înmulțiți expresii cu puteri, exponenții lor se adună întotdeauna (a b *a c = a b+c). Această lege matematică a fost derivată de Arhimede, iar mai târziu, în secolul al VIII-lea, matematicianul Virasen a creat un tabel cu exponenți întregi. Ei au fost cei care au servit pentru descoperirea ulterioară a logaritmilor. Exemple de utilizare a acestei funcții pot fi găsite aproape peste tot acolo unde trebuie să simplificați înmulțirea greoaie prin adunare simplă. Dacă petreceți 10 minute citind acest articol, vă vom explica ce sunt logaritmii și cum să lucrați cu ei. Într-un limbaj simplu și accesibil.

Definiție în matematică

Un logaritm este o expresie de următoarea formă: log a b=c, adică logaritmul oricărui număr nenegativ (adică orice pozitiv) „b” la baza sa „a” este considerat a fi puterea „c ” la care este necesar să se ridice baza „a” pentru a obține în final valoarea „b”. Să analizăm logaritmul folosind exemple, să presupunem că există o expresie log 2 8. Cum să găsim răspunsul? Este foarte simplu, trebuie să găsești o putere astfel încât de la 2 la puterea necesară să obții 8. După ce faci niște calcule în capul tău, obținem numărul 3! Și asta este adevărat, pentru că 2 la puterea lui 3 dă răspunsul ca 8.

Tipuri de logaritmi

Pentru mulți elevi și studenți, acest subiect pare complicat și de neînțeles, dar de fapt logaritmii nu sunt atât de înfricoșători, principalul lucru este să le înțelegeți sensul general și să vă amintiți proprietățile și unele reguli. Sunt trei specii individuale expresii logaritmice:

  1. Logaritmul natural ln a, unde baza este numărul Euler (e = 2,7).
  2. Decimală a, unde baza este 10.
  3. Logaritmul oricărui număr b la baza a>1.

Fiecare dintre ele este rezolvată într-un mod standard, incluzând simplificarea, reducerea și reducerea ulterioară la un singur logaritm folosind teoreme logaritmice. A primi valori corecte logaritmi, ar trebui să vă amintiți proprietățile lor și succesiunea acțiunilor atunci când le rezolvați.

Reguli și unele restricții

În matematică, există mai multe reguli-constrângeri care sunt acceptate ca axiomă, adică nu sunt supuse discuției și sunt adevărul. De exemplu, este imposibil să împărțiți numerele la zero și, de asemenea, este imposibil să extrageți rădăcina pare a numerelor negative. Logaritmii au, de asemenea, propriile reguli, după care puteți învăța cu ușurință să lucrați chiar și cu expresii logaritmice lungi și încăpătoare:

  • Baza „a” trebuie să fie întotdeauna mai mare decât zero și nu egală cu 1, altfel expresia își va pierde sensul, deoarece „1” și „0” în orice grad sunt întotdeauna egale cu valorile lor;
  • dacă a > 0, atunci a b >0, se dovedește că și „c” trebuie să fie mai mare decât zero.

Cum se rezolvă logaritmii?

De exemplu, sarcina este de a găsi răspunsul la ecuația 10 x = 100. Acest lucru este foarte ușor, trebuie să alegeți o putere prin ridicarea numărului zece la care obținem 100. Acesta, desigur, este 10 2 = 100.

Acum să reprezentăm această expresie în formă logaritmică. Obținem log 10 100 = 2. La rezolvarea logaritmilor, toate acțiunile practic converg pentru a găsi puterea la care este necesar să se introducă baza logaritmului pentru a obține un număr dat.

Pentru a determina cu exactitate valoarea unui grad necunoscut, trebuie să învățați cum să lucrați cu un tabel de grade. Arata cam asa:

După cum puteți vedea, unii exponenți pot fi ghiciți intuitiv dacă aveți o minte tehnică și cunoștințe despre tabla înmulțirii. Cu toate acestea, pentru valori mai mari veți avea nevoie de o masă de putere. Poate fi folosit chiar și de cei care nu știu absolut nimic despre complex subiecte matematice. Coloana din stânga conține numere (baza a), rândul de sus de numere este valoarea puterii c la care este ridicat numărul a. La intersecție, celulele conțin valorile numerice care sunt răspunsul (a c =b). Să luăm, de exemplu, prima celulă cu numărul 10 și să o pătratăm, obținem valoarea 100, care este indicată la intersecția celor două celule ale noastre. Totul este atât de simplu și ușor încât până și cel mai adevărat umanist va înțelege!

Ecuații și inegalități

Rezultă că în anumite condiții exponentul este logaritmul. Prin urmare, orice expresii numerice matematice pot fi scrise ca o egalitate logaritmică. De exemplu, 3 4 =81 poate fi scris ca logaritmul de bază 3 al lui 81 egal cu patru (log 3 81 = 4). Pentru puteri negative regulile sunt aceleași: 2 -5 = 1/32 îl scriem ca logaritm, obținem log 2 (1/32) = -5. Una dintre cele mai fascinante secțiuni ale matematicii este subiectul „logaritmilor”. Vom privi mai jos exemple și soluții de ecuații, imediat după studierea proprietăților acestora. Acum să vedem cum arată inegalitățile și cum să le distingem de ecuații.

Dată o expresie de următoarea formă: log 2 (x-1) > 3 - este inegalitatea logaritmică, deoarece valoarea necunoscută „x” se află sub semnul logaritmului. Și, de asemenea, în expresie sunt comparate două mărimi: logaritmul numărului dorit la baza doi este mai mare decât numărul trei.

Cea mai importantă diferență dintre ecuațiile logaritmice și inegalități este că ecuațiile cu logaritmi (de exemplu, logaritmul 2 x = √9) implică una sau mai multe valori numerice specifice în răspuns, în timp ce la rezolvarea unei inegalități, atât domeniul acceptabil. valorile și punctele sunt determinate întrerupând această funcție. În consecință, răspunsul nu este un simplu set de numere individuale, ca în răspunsul la o ecuație, ci o serie continuă sau un set de numere.

Teoreme de bază despre logaritmi

La rezolvarea sarcinilor primitive de găsire a valorilor logaritmului, este posibil ca proprietățile acestuia să nu fie cunoscute. Cu toate acestea, atunci când vine vorba de ecuații sau inegalități logaritmice, în primul rând, este necesar să înțelegem clar și să aplici în practică toate proprietățile de bază ale logaritmilor. Ne vom uita la exemple de ecuații mai târziu, să ne uităm mai întâi la fiecare proprietate în detaliu.

  1. Identitatea principală arată astfel: a logaB =B. Se aplică numai atunci când a este mai mare decât 0, nu este egal cu unu și B este mai mare decât zero.
  2. Logaritmul produsului poate fi reprezentat în următoarea formulă: log d (s 1 * s 2) = log d s 1 + log d s 2. În acest caz, condiția obligatorie este: d, s 1 și s 2 > 0; a≠1. Puteți da o dovadă pentru această formulă logaritmică, cu exemple și soluții. Fie log a s 1 = f 1 și log a s 2 = f 2, apoi a f1 = s 1, a f2 = s 2. Obținem că s 1 * s 2 = a f1 *a f2 = a f1+f2 (proprietățile lui grade ), și apoi prin definiție: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, care este ceea ce trebuia demonstrat.
  3. Logaritmul coeficientului arată astfel: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Teorema sub forma unei formule ia următoarea formă: log a q b n = n/q log a b.

Această formulă se numește „proprietatea gradului de logaritm”. Seamănă cu proprietățile gradelor obișnuite și nu este surprinzător, deoarece toată matematica se bazează pe postulate naturale. Să ne uităm la dovada.

Fie log a b = t, se dovedește a t =b. Dacă ridicăm ambele părți la puterea m: a tn = b n ;

dar deoarece a tn = (a q) nt/q = b n, prin urmare log a q b n = (n*t)/t, atunci log a q b n = n/q log a b. Teorema a fost demonstrată.

Exemple de probleme și inegalități

Cele mai comune tipuri de probleme pe logaritmi sunt exemple de ecuații și inegalități. Ele se găsesc în aproape toate cărțile de probleme și sunt, de asemenea, o parte obligatorie a examenelor de matematică. Pentru admitere la universitate sau promovare examenele de admitere la matematică trebuie să știi să rezolvi corect astfel de probleme.

Din păcate, nu există un plan sau o schemă unică pentru rezolvarea și determinarea valorii necunoscute a logaritmului, dar anumite reguli pot fi aplicate fiecărei inegalități matematice sau ecuații logaritmice. În primul rând, ar trebui să aflați dacă expresia poate fi simplificată sau duce la aspectul general. Puteți simplifica expresiile logaritmice lungi dacă le folosiți corect proprietățile. Să-i cunoaștem repede.

La hotărâre ecuații logaritmice, trebuie să stabilim ce tip de logaritm avem: un exemplu de expresie poate conține un logaritm natural sau unul zecimal.

Iată exemple ln100, ln1026. Soluția lor se rezumă la faptul că trebuie să determine puterea la care baza 10 va fi egală cu 100 și, respectiv, 1026. Pentru a rezolva logaritmii naturali, trebuie să aplicați identități logaritmice sau proprietățile acestora. Să ne uităm la exemple de rezolvare a problemelor logaritmice de diferite tipuri.

Cum să utilizați formulele logaritmice: cu exemple și soluții

Deci, să ne uităm la exemple de utilizare a teoremelor de bază despre logaritmi.

  1. Proprietatea logaritmului unui produs poate fi utilizată în sarcini în care este necesară extinderea mare valoare numerele b în factori mai simpli. De exemplu, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Răspunsul este 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - după cum puteți vedea, folosind a patra proprietate a puterii logaritmului, am reușit să rezolvăm o expresie aparent complexă și de nerezolvat. Trebuie doar să factorizați baza și apoi să eliminați valorile exponentului din semnul logaritmului.

Teme de la examenul de stat unificat

Logaritmii se găsesc adesea la examenele de admitere, în special multe probleme logaritmice la examenul de stat unificat (examen de stat pentru toți absolvenții de școală). De obicei, aceste sarcini sunt prezente nu numai în partea A (cea mai ușoară parte a testului a examenului), ci și în partea C (cele mai complexe și mai voluminoase sarcini). Examenul necesită cunoașterea exactă și perfectă a subiectului „Logaritmi naturali”.

Exemplele și soluțiile la probleme sunt preluate din oficial Opțiuni pentru examenul de stat unificat. Să vedem cum se rezolvă astfel de sarcini.

Dat log 2 (2x-1) = 4. Rezolvare:
să rescriem expresia, simplificând-o puțin log 2 (2x-1) = 2 2, prin definiția logaritmului obținem că 2x-1 = 2 4, deci 2x = 17; x = 8,5.

  • Cel mai bine este să reduceți toți logaritmii la aceeași bază, astfel încât soluția să nu fie greoaie și confuză.
  • Toate expresiile de sub semnul logaritmului sunt indicate ca pozitive, prin urmare, atunci când exponentul unei expresii care se află sub semnul logaritmului și ca bază a acesteia este scos ca multiplicator, expresia rămasă sub logaritm trebuie să fie pozitivă.

Instrucţiuni

Scrieți expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritmul zecimal. Dacă logaritmul are ca bază numărul e, atunci scrieți expresia: ln b – logaritm natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți suma a două funcții, trebuie pur și simplu să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

Atunci când găsiți derivata produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții înmulțită cu prima funcție: (u*v)" = u"*v +v"*u;

Pentru a afla derivata coeficientului a doua functii, este necesar sa scadem din produsul derivatei dividendului inmultit cu functia divizor produsul derivatei divizorului inmultit cu functia dividendului si impartiti toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dat functie complexa, atunci este necesar să se înmulțească derivata funcției interne și derivata celei externe. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind rezultatele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Există, de asemenea, probleme care implică calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției în punct dat y"(1)=8*e^0=8

Video pe tema

Sfaturi utile

Învață tabelul derivatelor elementare. Acest lucru va economisi timp semnificativ.

Surse:

  • derivată a unei constante

Deci, care este diferența? ir ecuație rațională din rațional? Dacă variabila necunoscută se află sub semnul rădăcină pătrată, atunci ecuația este considerată irațională.

Instrucţiuni

Principala metodă de rezolvare a unor astfel de ecuații este metoda de construire a ambelor părți ecuațiiîntr-un pătrat. Cu toate acestea. acest lucru este firesc, primul lucru pe care trebuie să-l faci este să scapi de semn. Această metodă nu este dificilă din punct de vedere tehnic, dar uneori poate duce la probleme. De exemplu, ecuația este v(2x-5)=v(4x-7). Prin pătrarea ambelor părți se obține 2x-5=4x-7. Rezolvarea unei astfel de ecuații nu este dificilă; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unul în ecuație în loc de valoarea lui x Și părțile din dreapta și din stânga vor conține expresii care nu au sens. Această valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, o ecuație irațională se rezolvă folosind metoda punerii la pătrat a ambelor laturi. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2х+vх-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Mutați compuși ecuații, care nu au rădăcină pătrată, în partea dreaptăși apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar și altul, mai elegant. Introduceți o nouă variabilă; vх=y. În consecință, veți primi o ecuație de forma 2y2+y-3=0. Adică de obicei ecuație pătratică. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vх=1; vх=-3/2. A doua ecuație nu are rădăcini din prima găsim că x=1. Nu uitați să verificați rădăcinile.

Rezolvarea identităților este destul de simplă. Pentru a face acest lucru, este necesar să efectuați transformări identice până la atingerea scopului stabilit. Astfel, cu ajutorul unor operații aritmetice simple se va rezolva problema pusă.

vei avea nevoie

  • - hartie;
  • - stilou.

Instrucţiuni

Cele mai simple dintre astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, sunt multe și formule trigonometrice, care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egal cu pătratul primului plus de două ori produsul primului cu al doilea și plus pătratul celui de-al doilea, adică (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplificați pe ambele

Principii generale ale soluției

Repetați conform manualului analiză matematică sau matematică superioară, ce este o integrală definită. După cum se știe, soluția unei integrale definite este o funcție a cărei derivată va da un integrand. Această funcție se numește antiderivat. Pe baza acestui principiu se construiesc integralele principale.
Determinați după forma integrandului în care dintre integralele tabelului se încadrează în acest caz,. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda de înlocuire a variabilei

Dacă funcția integrand este functie trigonometrica, al cărui argument conține un polinom, apoi încercați să utilizați metoda de înlocuire a variabilei. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza relației dintre variabilele noi și vechi, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți noua diferență în . Deci vei primi aspect nou a integralei anterioare, apropiată sau chiar corespunzătoare oricărui tabel.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, o formă vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este relația Ostrogradsky-Gauss. Această lege ne permite să trecem de la fluxul rotor al unei anumite funcții vectoriale la integrala triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor de integrare

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr obținut din limita inferioară în antiderivată. Dacă una dintre limitele integrării este infinitul, atunci când o înlocuiți în funcția antiderivată, este necesar să mergeți la limită și să găsiți spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați geometric limitele integrării pentru a înțelege cum să evaluați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi planuri întregi care limitează volumul care este integrat.

Expresii logaritmice, exemple de rezolvare. În acest articol ne vom uita la problemele legate de rezolvarea logaritmilor. Sarcinile pun întrebarea de a găsi sensul unei expresii. Trebuie remarcat faptul că conceptul de logaritm este folosit în multe sarcini și înțelegerea sensului său este extrem de importantă. În ceea ce privește examenul de stat unificat, logaritmul este utilizat la rezolvarea ecuațiilor, în probleme aplicate, precum și în sarcinile legate de studiul funcțiilor.

Să dăm exemple pentru a înțelege însuși sensul logaritmului:


Bazele identitate logaritmică:

Proprietăți ale logaritmilor care trebuie reținut întotdeauna:

*Logaritmul produsului egal cu suma logaritmii factorilor.

* * *

*Logaritmul unui cot (fracție) este egal cu diferența dintre logaritmii factorilor.

* * *

*Logaritmul unui exponent este egal cu produsul exponentului și logaritmul bazei sale.

* * *

*Tranziția la o nouă fundație

* * *

Mai multe proprietăți:

* * *

Calculul logaritmilor este strâns legat de utilizarea proprietăților exponenților.

Să enumerăm câteva dintre ele:

Esența acestei proprietăți este că atunci când numărătorul este transferat la numitor și invers, semnul exponentului se schimbă în opus. De exemplu:

Un corolar al acestei proprietăți:

* * *

Când ridicați o putere la o putere, baza rămâne aceeași, dar exponenții sunt înmulțiți.

* * *

După cum ați văzut, conceptul de logaritm în sine este simplu. Principalul lucru este că aveți nevoie de o bună practică, care vă oferă o anumită abilitate. Desigur, sunt necesare cunoștințe de formule. Dacă abilitatea de a converti logaritmi elementari nu a fost dezvoltată, atunci când rezolvați sarcini simple puteți face cu ușurință o greșeală.

Exersează, rezolvă mai întâi cele mai simple exemple de la cursul de matematică, apoi treci la altele mai complexe. În viitor, voi arăta cu siguranță cât de „urât” sunt rezolvați logaritmii, acestea nu vor apărea la examenul de stat unificat, dar sunt de interes, nu le ratați!

Asta e tot! Mult succes pentru tine!

Cu stimă, Alexander Krutitskikh

P.S: V-as fi recunoscator daca mi-ati spune despre site pe retelele de socializare.

Menținerea confidențialității dvs. este importantă pentru noi. Din acest motiv, am dezvoltat o Politică de confidențialitate care descrie modul în care folosim și stocăm informațiile dumneavoastră. Vă rugăm să examinați practicile noastre de confidențialitate și să ne comunicați dacă aveți întrebări.

Colectarea și utilizarea informațiilor personale

Informațiile personale se referă la date care pot fi folosite pentru a identifica sau contacta o anumită persoană.

Vi se poate cere să furnizați informațiile dumneavoastră personale în orice moment când ne contactați.

Mai jos sunt câteva exemple de tipuri de informații personale pe care le putem colecta și cum putem folosi aceste informații.

Ce informații personale colectăm:

  • Când trimiteți o cerere pe site, este posibil să colectăm diverse informații, inclusiv numele, numărul de telefon, adresa dvs e-mail etc.

Cum folosim informațiile dumneavoastră personale:

  • Colectat de noi Informații personale ne permite să vă contactăm și să vă informăm despre oferte unice, promoții și alte evenimente și evenimente viitoare.
  • Din când în când, putem folosi informațiile dumneavoastră personale pentru a trimite notificări și comunicări importante.
  • De asemenea, putem folosi informații personale în scopuri interne, cum ar fi efectuarea de audituri, analize de date și diverse cercetări pentru a îmbunătăți serviciile pe care le oferim și pentru a vă oferi recomandări cu privire la serviciile noastre.
  • Dacă participați la o tragere la sorți, la un concurs sau la o promoție similară, este posibil să folosim informațiile pe care le furnizați pentru a administra astfel de programe.

Dezvăluirea informațiilor către terți

Nu dezvăluim informațiile primite de la dumneavoastră către terți.

Excepții:

  • Dacă este necesar - în conformitate cu legea, procedura judiciară, procedurile judiciare și/sau în baza cererilor sau solicitărilor publice din partea agentii guvernamentale pe teritoriul Federației Ruse - dezvăluie informațiile tale personale. De asemenea, putem dezvălui informații despre dumneavoastră dacă stabilim că o astfel de dezvăluire este necesară sau adecvată pentru securitate, aplicarea legii sau alte scopuri de importanță publică.
  • În cazul unei reorganizări, fuziuni sau vânzări, putem transfera informațiile personale pe care le colectăm către terțul succesor aplicabil.

Protecția informațiilor personale

Luăm măsuri de precauție - inclusiv administrative, tehnice și fizice - pentru a vă proteja informațiile personale împotriva pierderii, furtului și utilizării greșite, precum și împotriva accesului, dezvăluirii, modificării și distrugerii neautorizate.

Respectarea vieții private la nivelul companiei

Pentru a ne asigura că informațiile dumneavoastră personale sunt în siguranță, comunicăm angajaților noștri standarde de confidențialitate și securitate și aplicăm strict practicile de confidențialitate.

Publicații pe această temă