Există multe soluții pentru o ecuație pătratică. Calculator online

Doar. După formule și reguli clare, simple. La prima etapă

este necesar să aducem ecuația dată la o formă standard, adică. la forma:

Dacă ecuația vă este deja dată în această formă, nu trebuie să faceți prima etapă. Cel mai important lucru este să o faci corect

determinați toți coeficienții, O, bŞi c.

Formula pentru găsirea rădăcinilor unei ecuații pătratice.

Expresia de sub semnul rădăcinii se numește discriminant . După cum puteți vedea, pentru a găsi X, noi

folosim doar a, b și c. Aceste. coeficienţi din ecuație pătratică. Doar pune-l cu grijă

valorile a, b și c Calculăm în această formulă. Inlocuim cu lor semne!

De exemplu, în ecuația:

O =1; b = 3; c = -4.

Inlocuim valorile si scriem:

Exemplul este aproape rezolvat:

Acesta este răspunsul.

Cele mai frecvente greșeli sunt confuzia cu valorile semnelor a, bŞi Cu. Sau mai degrabă, cu substituție

valori negative în formula de calcul a rădăcinilor. O înregistrare detaliată a formulei vine în ajutor aici

cu numere specifice. Dacă ai probleme cu calculele, fă-o!

Să presupunem că trebuie să rezolvăm următorul exemplu:

Aici o = -6; b = -5; c = -1

Descriem totul în detaliu, cu atenție, fără a rata nimic cu toate semnele și parantezele:

Adesea ecuații pătratice arata usor diferit. De exemplu, așa:

Acum luați notă de tehnicile practice care reduc dramatic numărul de erori.

Prima numire. Nu fi leneș înainte rezolvarea unei ecuații pătratice aduceți-l la forma standard.

Ce înseamnă acest lucru?

Să presupunem că după toate transformările obținem următoarea ecuație:

Nu vă grăbiți să scrieți formula rădăcină! Aproape sigur vei amesteca șansele a, b și c.

Construiți corect exemplul. Mai întâi, X pătrat, apoi fără pătrat, apoi termenul liber. Ca aceasta:

Scapa de minus. Cum? Trebuie să înmulțim întreaga ecuație cu -1. Primim:

Dar acum puteți scrie în siguranță formula rădăcinilor, puteți calcula discriminantul și puteți termina de rezolvat exemplul.

Decide pentru tine. Acum ar trebui să aveți rădăcinile 2 și -1.

Recepție secundă. Verificați rădăcinile! De teorema lui Vieta.

Pentru a rezolva ecuațiile pătratice date, i.e. dacă coeficientul

x 2 +bx+c=0,

Apoix 1 x 2 =c

x 1 +x 2 =−b

Pentru o ecuație pătratică completă în care a≠1:

x 2 +bx+c=0,

împărțiți întreaga ecuație la O:

Unde x 1Şi x 2 - rădăcinile ecuației.

Recepția a treia. Dacă ecuația ta are coeficienți fracționali, scapă de fracții! Multiplica

ecuație cu numitor comun.

Concluzie. Sfaturi practice:

1. Înainte de a rezolva, aducem ecuația pătratică la forma standard și o construim Corect.

2. Dacă există un coeficient negativ în fața pătratului X, îl eliminăm înmulțind totul

ecuații prin -1.

3. Dacă coeficienții sunt fracționali, eliminăm fracțiile înmulțind întreaga ecuație cu corespunzătoare

factor.

4. Dacă x pătrat este pur, coeficientul său este egal cu unu, soluția poate fi verificată cu ușurință prin

Problemele cu ecuații cuadratice sunt, de asemenea, studiate în programa școlarăși în universități. Ele înseamnă ecuații de forma a*x^2 + b*x + c = 0, unde x- variabilă, a, b, c – constante; o<>0 . Sarcina este de a găsi rădăcinile ecuației.

Sensul geometric al ecuației pătratice

Graficul unei funcții care este reprezentată printr-o ecuație pătratică este o parabolă. Soluțiile (rădăcinile) unei ecuații pătratice sunt punctele de intersecție ale parabolei cu axa absciselor (x). Rezultă că există trei cazuri posibile:
1) parabola nu are puncte de intersecție cu axa absciselor. Aceasta înseamnă că se află în planul superior cu ramurile în sus sau în partea de jos cu ramurile în jos. În astfel de cazuri, ecuația pătratică nu are rădăcini reale (are două rădăcini complexe).

2) parabola are un punct de intersecție cu axa Ox. Un astfel de punct se numește vârful parabolei, iar ecuația pătratică de la el capătă minimul sau valoarea maxima. În acest caz, ecuația pătratică are o rădăcină reală (sau două rădăcini identice).

3) Ultimul caz este mai interesant în practică - există două puncte de intersecție ale parabolei cu axa absciselor. Aceasta înseamnă că există două rădăcini reale ale ecuației.

Pe baza analizei coeficienților puterilor variabilelor se pot trage concluzii interesante despre amplasarea parabolei.

1) Dacă coeficientul a este mai mare decât zero, atunci ramurile parabolei sunt îndreptate în sus, dacă este negativ, ramurile parabolei sunt îndreptate în jos;

2) Dacă coeficientul b este mai mare decât zero, atunci vârful parabolei se află în semiplanul stâng, dacă ia o valoare negativă, atunci în dreapta.

Derivarea formulei de rezolvare a unei ecuații pătratice

Să transferăm constanta din ecuația pătratică

pentru semnul egal, obținem expresia

Înmulțiți ambele părți cu 4a

Pentru a ajunge la stânga pătrat perfect se adaugă b^2 pe ambele părți și se efectuează transformarea

De aici găsim

Formula pentru discriminantul și rădăcinile unei ecuații pătratice

Discriminantul este valoarea expresiei radicale Dacă este pozitivă, atunci ecuația are două rădăcini reale, calculate prin formula Când discriminantul este zero, ecuația pătratică are o soluție (două rădăcini coincidente), care poate fi obținută cu ușurință din formula de mai sus pentru D=0 Când discriminantul este negativ, ecuația nu are rădăcini reale. Cu toate acestea, soluțiile ecuației pătratice se găsesc în plan complex, iar valoarea lor este calculată folosind formula

teorema lui Vieta

Să luăm în considerare două rădăcini ale unei ecuații pătratice și să construim o ecuație pătratică pe baza lor teorema lui Vieta în sine decurge cu ușurință din notația: dacă avem o ecuație pătratică de forma atunci suma rădăcinilor sale este egală cu coeficientul p luat cu semnul opus, iar produsul rădăcinilor ecuației este egal cu termenul liber q. Formula pentru cele de mai sus va arăta ca Dacă într-o ecuație clasică constanta a este diferită de zero, atunci trebuie să împărțiți întreaga ecuație cu ea și apoi să aplicați teorema lui Vieta.

Schema de factorizare a ecuației pătratice

Să fie stabilită sarcina: factorizați o ecuație pătratică. Pentru a face acest lucru, mai întâi rezolvăm ecuația (găsește rădăcinile). Apoi, înlocuim rădăcinile găsite în formula de expansiune pentru ecuația pătratică. Aceasta va rezolva problema.

Probleme cu ecuații cuadratice

Sarcina 1. Aflați rădăcinile unei ecuații pătratice

x^2-26x+120=0 .

Rezolvare: Notați coeficienții și înlocuiți-i în formula discriminantă

Rădăcina acestei valori este 14, este ușor de găsit cu un calculator sau de reținut cu o utilizare frecventă, totuși, pentru comoditate, la sfârșitul articolului vă voi oferi o listă de pătrate de numere care pot fi adesea întâlnite în astfel de probleme.
Înlocuim valoarea găsită în formula rădăcină

și primim

Sarcina 2. Rezolvați ecuația

2x 2 +x-3=0.

Rezolvare: Avem o ecuație pătratică completă, scriem coeficienții și găsim discriminantul


Folosind formule cunoscute găsim rădăcinile ecuației pătratice

Sarcina 3. Rezolvați ecuația

9x 2 -12x+4=0.

Rezolvare: Avem o ecuație pătratică completă. Determinarea discriminantului

Avem un caz în care rădăcinile coincid. Găsiți valorile rădăcinilor folosind formula

Sarcina 4. Rezolvați ecuația

x^2+x-6=0 .

Soluție: În cazurile în care există coeficienți mici pentru x, este recomandabil să aplicați teorema lui Vieta. Prin condiția sa obținem două ecuații

Din a doua condiție constatăm că produsul trebuie să fie egal cu -6. Aceasta înseamnă că una dintre rădăcini este negativă. Avem următoarea pereche posibilă de soluții (-3;2), (3;-2) . Ținând cont de prima condiție, respingem a doua pereche de soluții.
Rădăcinile ecuației sunt egale

Problema 5. Aflați lungimile laturilor unui dreptunghi dacă perimetrul lui este de 18 cm și aria lui este de 77 cm 2.

Rezolvare: Jumătate din perimetrul unui dreptunghi este egal cu suma laturilor adiacente. Să notăm x ca latura mai mare, apoi 18-x este latura sa mai mică. Aria dreptunghiului este egală cu produsul acestor lungimi:
x(18-x)=77;
sau
x 2 -18x+77=0.
Să găsim discriminantul ecuației

Calcularea rădăcinilor ecuației

Dacă x=11,18's=7, opusul este de asemenea adevărat (dacă x=7, atunci 21's=9).

Problema 6. Factorizați ecuația pătratică 10x 2 -11x+3=0.

Rezolvare: Să calculăm rădăcinile ecuației, pentru a face acest lucru găsim discriminantul

Înlocuim valoarea găsită în formula rădăcină și calculăm

Aplicam formula pentru descompunerea unei ecuatii patratice prin radacini

Deschizând paranteze obținem o identitate.

Ecuație pătratică cu parametru

Exemplul 1. La ce valori ale parametrilor A, ecuația (a-3)x 2 + (3-a)x-1/4=0 are o rădăcină?

Rezolvare: Prin înlocuirea directă a valorii a=3 vedem că nu are soluție. În continuare, vom folosi faptul că, cu un discriminant zero, ecuația are o rădăcină a multiplicității 2. Să scriem discriminantul

Să o simplificăm și să o echivalăm cu zero

Am obținut o ecuație pătratică în raport cu parametrul a, a cărei soluție poate fi obținută cu ușurință folosind teorema lui Vieta. Suma rădăcinilor este 7, iar produsul lor este 12. Prin simpla căutare stabilim că numerele 3,4 vor fi rădăcinile ecuației. Deoarece am respins deja soluția a=3 la începutul calculelor, singura corectă va fi - a=4. Astfel, când a=4 ecuația are o rădăcină.

Exemplul 2. La ce valori ale parametrilor A, ecuaţie a(a+3)x^2+(2a+6)x-3a-9=0 are mai multe rădăcini?

Soluție: Să luăm mai întâi în considerare punctele singulare, acestea vor fi valorile a=0 și a=-3. Când a=0, ecuația va fi simplificată la forma 6x-9=0; x=3/2 și va fi o singură rădăcină. Pentru a= -3 obținem identitatea 0=0.
Să calculăm discriminantul

și găsiți valoarea lui a la care este pozitivă

Din prima condiție obținem a>3. Pentru al doilea, găsim discriminantul și rădăcinile ecuației


Să definim intervalele în care ia funcția valori pozitive. Inlocuind punctul a=0 obtinem 3>0 . Deci, în afara intervalului (-3;1/3) funcția este negativă. Nu uitați ideea a=0, care ar trebui exclus deoarece ecuația originală are o rădăcină în ea.
Ca rezultat, obținem două intervale care satisfac condițiile problemei

Vor exista multe sarcini similare în practică, încercați să vă dați seama singur sarcinile și nu uitați să țineți cont de condițiile care se exclud reciproc. Studiați bine formulele pentru rezolvarea ecuațiilor pătratice sunt adesea necesare în calcule în diverse probleme și științe.

Ecuațiile cuadratice sunt studiate în clasa a VIII-a, așa că nu este nimic complicat aici. Capacitatea de a le rezolva este absolut necesară.

O ecuație pătratică este o ecuație de forma ax 2 + bx + c = 0, unde coeficienții a, b și c sunt numere arbitrare și a ≠ 0.

Înainte de a studia metode specifice soluții, rețineți că toate ecuațiile pătratice pot fi împărțite în trei clase:

  1. Nu au rădăcini;
  2. Au exact o rădăcină;
  3. Au două rădăcini diferite.

Aceasta este o diferență importantă între ecuațiile pătratice și cele liniare, unde rădăcina există întotdeauna și este unică. Cum se determină câte rădăcini are o ecuație? Există un lucru minunat pentru asta - discriminant.

Discriminant

Să fie dată ecuația pătratică ax 2 + bx + c = 0 Atunci discriminantul este pur și simplu numărul D = b 2 − 4ac.

Trebuie să știi această formulă pe de rost. De unde vine nu este important acum. Un alt lucru este important: prin semnul discriminantului poți determina câte rădăcini are o ecuație pătratică. Anume:

  1. Daca D< 0, корней нет;
  2. Dacă D = 0, există exact o rădăcină;
  3. Dacă D > 0, vor exista două rădăcini.

Vă rugăm să rețineți: discriminantul indică numărul de rădăcini și deloc semnele acestora, așa cum cred din anumite motive mulți oameni. Aruncă o privire la exemple și vei înțelege totul singur:

Sarcină. Câte rădăcini au ecuațiile pătratice:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Să scriem coeficienții pentru prima ecuație și să găsim discriminantul:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Deci discriminantul este pozitiv, deci ecuația are două rădăcini diferite. Analizăm a doua ecuație într-un mod similar:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Discriminantul este negativ, nu există rădăcini. Ultima ecuație rămasă este:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Discriminantul este zero - rădăcina va fi una.

Vă rugăm să rețineți că au fost notați coeficienți pentru fiecare ecuație. Da, este lung, da, este plictisitor, dar nu vei amesteca șansele și nu vei face greșeli stupide. Alege pentru tine: viteza sau calitate.

Apropo, dacă înțelegi, după un timp nu va mai fi nevoie să notezi toți coeficienții. Vei efectua astfel de operații în capul tău. Majoritatea oamenilor încep să facă asta undeva după 50-70 de ecuații rezolvate - în general, nu atât de mult.

Rădăcinile unei ecuații pătratice

Acum să trecem la soluția în sine. Dacă discriminantul D > 0, rădăcinile pot fi găsite folosind formulele:

Formula de bază pentru rădăcinile unei ecuații pătratice

Când D = 0, puteți folosi oricare dintre aceste formule - veți obține același număr, care va fi răspunsul. În sfârșit, dacă D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Prima ecuație:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ ecuația are două rădăcini. Să le găsim:

A doua ecuație:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ ecuația are din nou două rădăcini. Să le găsim

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

În sfârșit, a treia ecuație:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ ecuația are o rădăcină. Se poate folosi orice formulă. De exemplu, primul:

După cum puteți vedea din exemple, totul este foarte simplu. Dacă știi formulele și poți număra, nu vor fi probleme. Cel mai adesea, erorile apar la înlocuirea coeficienților negativi în formulă. Din nou, tehnica descrisă mai sus vă va ajuta: uitați-vă la formula literal, notați fiecare pas - și foarte curând veți scăpa de greșeli.

Ecuații patratice incomplete

Se întâmplă ca o ecuație pătratică să fie ușor diferită de ceea ce este dat în definiție. De exemplu:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Este ușor de observat că acestor ecuații lipsește unul dintre termeni. Astfel de ecuații pătratice sunt chiar mai ușor de rezolvat decât cele standard: nici măcar nu necesită calcularea discriminantului. Deci, să introducem un nou concept:

Ecuația ax 2 + bx + c = 0 se numește ecuație pătratică incompletă dacă b = 0 sau c = 0, adică. coeficientul variabilei x sau al elementului liber este egal cu zero.

Desigur, un caz foarte dificil este posibil când ambii acești coeficienți sunt egali cu zero: b = c = 0. În acest caz, ecuația ia forma ax 2 = 0. Evident, o astfel de ecuație are o singură rădăcină: x = 0.

Să luăm în considerare cazurile rămase. Fie b = 0, atunci obținem o ecuație pătratică incompletă de forma ax 2 + c = 0. Să o transformăm puțin:

Din moment ce aritmetica rădăcină pătrată există doar dintr-un număr nenegativ, ultima egalitate are sens doar pentru (−c /a) ≥ 0. Concluzie:

  1. Dacă într-o ecuație pătratică incompletă de forma ax 2 + c = 0 este satisfăcută inegalitatea (−c /a) ≥ 0, vor exista două rădăcini. Formula este dată mai sus;
  2. Dacă (−c /a)< 0, корней нет.

După cum puteți vedea, nu a fost necesar un discriminant - nu există deloc calcule complexe în ecuațiile pătratice incomplete. De fapt, nici nu este necesar să ne amintim inegalitatea (−c /a) ≥ 0. Este suficient să exprimăm valoarea x 2 și să vedem ce este de cealaltă parte a semnului egal. Dacă acolo număr pozitiv- vor fi două rădăcini. Dacă este negativ, nu vor exista deloc rădăcini.

Acum să ne uităm la ecuații de forma ax 2 + bx = 0, în care elementul liber este egal cu zero. Totul este simplu aici: vor exista întotdeauna două rădăcini. Este suficient să factorizezi polinomul:

Scoaterea factorului comun din paranteze

Produsul este zero atunci când cel puțin unul dintre factori este zero. De aici vin rădăcinile. În concluzie, să ne uităm la câteva dintre aceste ecuații:

Sarcină. Rezolvarea ecuațiilor pătratice:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nu există rădăcini, pentru că un pătrat nu poate fi egal cu un număr negativ.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Nivel de intrare

Ecuații cuadratice. Ghid cuprinzător (2019)

În termenul „ecuație pătratică”, cuvântul cheie este „quadratic”. Aceasta înseamnă că ecuația trebuie să conțină în mod necesar o variabilă (același x) pătrat și nu ar trebui să existe x la cea de-a treia putere (sau mai mare).

Rezolvarea multor ecuații se reduce la rezolvarea ecuațiilor pătratice.

Să învățăm să determinăm că aceasta este o ecuație pătratică și nu o altă ecuație.

Exemplul 1.

Să scăpăm de numitor și să înmulțim fiecare termen al ecuației cu

Să mutăm totul la partea stângăși aranjați termenii în ordinea descrescătoare a puterilor lui x

Acum putem spune cu încredere că această ecuație este pătratică!

Exemplul 2.

Să înmulțim stânga și partea dreaptă la:

Această ecuație, deși a fost inițial în ea, nu este pătratică!

Exemplul 3.

Să înmulțim totul cu:

Înfricoșător? Gradul al patrulea și al doilea... Totuși, dacă facem o înlocuire, vom vedea că avem o ecuație pătratică simplă:

Exemplul 4.

Se pare că este acolo, dar să aruncăm o privire mai atentă. Să mutăm totul în partea stângă:

Vezi, este redusă - și acum este o simplă ecuație liniară!

Acum încercați să determinați singuri care dintre următoarele ecuații sunt pătratice și care nu:

Exemple:

Raspunsuri:

  1. pătrat;
  2. pătrat;
  3. nu pătrat;
  4. nu pătrat;
  5. nu pătrat;
  6. pătrat;
  7. nu pătrat;
  8. pătrat.

În mod convențional, matematicienii împart toate ecuațiile pătratice în următoarele tipuri:

  • Completează ecuațiile pătratice- ecuații în care coeficienții și, precum și termenul liber c, nu sunt egali cu zero (ca în exemplu). În plus, printre ecuațiile pătratice complete există dat- acestea sunt ecuații în care coeficientul (ecuația din exemplul unu este nu numai completă, ci și redusă!)
  • Ecuații patratice incomplete- ecuații în care coeficientul și/sau termenul liber c sunt egali cu zero:

    Sunt incomplete pentru că le lipsește un element. Dar ecuația trebuie să conțină întotdeauna x pătrat!!! În caz contrar, nu va mai fi o ecuație pătratică, ci o altă ecuație.

De ce au venit cu o asemenea împărțire? S-ar părea că există un X pătrat și bine. Această împărțire este determinată de metodele de soluție. Să ne uităm la fiecare dintre ele mai detaliat.

Rezolvarea ecuațiilor pătratice incomplete

În primul rând, să ne concentrăm pe rezolvarea ecuațiilor pătratice incomplete - sunt mult mai simple!

Există tipuri de ecuații pătratice incomplete:

  1. , în această ecuație coeficientul este egal.
  2. , în această ecuație termenul liber este egal cu.
  3. , în această ecuație coeficientul și termenul liber sunt egali.

1. i. Deoarece știm cum să luăm rădăcina pătrată, să folosim această ecuație pentru a exprima

Expresia poate fi fie negativă, fie pozitivă. Un număr pătrat nu poate fi negativ, deoarece la înmulțirea a două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv, deci: dacă, atunci ecuația nu are soluții.

Și dacă, atunci obținem două rădăcini. Nu este nevoie să memorezi aceste formule. Principalul lucru este că trebuie să știți și să vă amintiți întotdeauna că nu poate fi mai puțin.

Să încercăm să rezolvăm câteva exemple.

Exemplul 5:

Rezolvați ecuația

Acum tot ce rămâne este să extragi rădăcina din partea stângă și dreaptă. La urma urmei, îți amintești cum să extragi rădăcini?

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!!!

Exemplul 6:

Rezolvați ecuația

Răspuns:

Exemplul 7:

Rezolvați ecuația

Oh! Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini!

Pentru astfel de ecuații care nu au rădăcini, matematicienii au venit cu o pictogramă specială - (set gol). Și răspunsul poate fi scris astfel:

Răspuns:

Astfel, această ecuație pătratică are două rădăcini. Nu există restricții aici, deoarece nu am extras rădăcina.
Exemplul 8:

Rezolvați ecuația

Să scoatem factorul comun din paranteze:

Astfel,

Această ecuație are două rădăcini.

Răspuns:

Cel mai simplu tip de ecuații pătratice incomplete (deși toate sunt simple, nu?). Evident, această ecuație are întotdeauna o singură rădăcină:

Ne vom dispensa de exemple aici.

Rezolvarea ecuațiilor pătratice complete

Vă reamintim că o ecuație pătratică completă este o ecuație a formei ecuației în care

Rezolvarea ecuațiilor pătratice complete este puțin mai dificilă (doar puțin) decât acestea.

Ține minte Orice ecuație pătratică poate fi rezolvată folosind un discriminant! Chiar incomplet.

Celelalte metode te vor ajuta să o faci mai repede, dar dacă ai probleme cu ecuațiile pătratice, mai întâi stăpânește soluția folosind discriminantul.

1. Rezolvarea ecuațiilor pătratice folosind un discriminant.

Rezolvarea ecuațiilor pătratice folosind această metodă este foarte simplă, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule.

Dacă, atunci ecuația are o rădăcină, trebuie să acordați o atenție deosebită pasului. Discriminantul () ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci formula din pas se va reduce la. Astfel, ecuația va avea doar o rădăcină.
  • Dacă, atunci nu vom putea extrage rădăcina discriminantului la pas. Aceasta indică faptul că ecuația nu are rădăcini.

Să ne întoarcem la ecuațiile noastre și să vedem câteva exemple.

Exemplul 9:

Rezolvați ecuația

Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are două rădăcini.

Pasul 3.

Răspuns:

Exemplul 10:

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că ecuația are o singură rădăcină.

Răspuns:

Exemplul 11:

Rezolvați ecuația

Ecuația este prezentată în formă standard, deci Pasul 1 sărim.

Pasul 2.

Găsim discriminantul:

Aceasta înseamnă că nu vom putea extrage rădăcina discriminantului. Nu există rădăcini ale ecuației.

Acum știm cum să scriem corect astfel de răspunsuri.

Răspuns: fara radacini

2. Rezolvarea ecuațiilor pătratice folosind teorema lui Vieta.

Dacă vă amintiți, există un tip de ecuație care se numește redusă (când coeficientul a este egal cu):

Astfel de ecuații sunt foarte ușor de rezolvat folosind teorema lui Vieta:

Suma rădăcinilor dat ecuația pătratică este egală, iar produsul rădăcinilor este egal.

Exemplul 12:

Rezolvați ecuația

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece .

Suma rădăcinilor ecuației este egală, adică. obținem prima ecuație:

Și produsul este egal cu:

Să compunem și să rezolvăm sistemul:

  • Şi. Suma este egală cu;
  • Şi. Suma este egală cu;
  • Şi. Suma este egală.

și sunt soluția pentru sistem:

Răspuns: ; .

Exemplul 13:

Rezolvați ecuația

Răspuns:

Exemplul 14:

Rezolvați ecuația

Ecuația este dată, ceea ce înseamnă:

Răspuns:

ECUATII CADRATE. NIVEL MEDIU

Ce este o ecuație pătratică?

Cu alte cuvinte, o ecuație pătratică este o ecuație de forma, unde - necunoscutul, - unele numere și.

Numărul se numește cel mai mare sau primul coeficient ecuație pătratică, - al doilea coeficient, A - membru liber.

De ce? Pentru că dacă ecuația devine imediat liniară, pentru că va dispărea.

În acest caz, și poate fi egal cu zero. În această ecuație de scaun se numește incompletă. Dacă toți termenii sunt la locul lor, adică, ecuația este completă.

Soluții la diferite tipuri de ecuații pătratice

Metode de rezolvare a ecuațiilor pătratice incomplete:

În primul rând, să ne uităm la metodele de rezolvare a ecuațiilor pătratice incomplete - sunt mai simple.

Putem distinge următoarele tipuri de ecuații:

I., în această ecuație coeficientul și termenul liber sunt egali.

II. , în această ecuație coeficientul este egal.

III. , în această ecuație termenul liber este egal cu.

Acum să ne uităm la soluția pentru fiecare dintre aceste subtipuri.

Evident, această ecuație are întotdeauna o singură rădăcină:

Un număr pătrat nu poate fi negativ, deoarece atunci când înmulțiți două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv. De aceea:

dacă, atunci ecuația nu are soluții;

dacă avem două rădăcini

Nu este nevoie să memorezi aceste formule. Principalul lucru de reținut este că nu poate fi mai puțin.

Exemple:

Solutii:

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!

Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini.

Pentru a nota pe scurt că o problemă nu are soluții, folosim pictograma set gol.

Răspuns:

Deci, această ecuație are două rădăcini: și.

Răspuns:

Să scoatem factorul comun din paranteze:

Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Aceasta înseamnă că ecuația are o soluție atunci când:

Deci, această ecuație pătratică are două rădăcini: și.

Exemplu:

Rezolvați ecuația.

Soluţie:

Să factorizăm partea stângă a ecuației și să găsim rădăcinile:

Răspuns:

Metode de rezolvare a ecuațiilor pătratice complete:

1. Discriminant

Rezolvarea ecuațiilor pătratice în acest fel este ușoară, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule. Amintiți-vă, orice ecuație pătratică poate fi rezolvată folosind un discriminant! Chiar incomplet.

Ați observat rădăcina de la discriminant în formula pentru rădăcini? Dar discriminantul poate fi negativ. Ce să fac? Trebuie să acordăm o atenție deosebită pasului 2. Discriminantul ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci ecuația are rădăcini:
  • Dacă, atunci ecuația are aceleași rădăcini și, de fapt, o rădăcină:

    Astfel de rădăcini se numesc rădăcini duble.

  • Dacă, atunci rădăcina discriminantului nu este extrasă. Aceasta indică faptul că ecuația nu are rădăcini.

De ce este posibil cantități diferite rădăcini? Să ne întoarcem la semnificația geometrică a ecuației pătratice. Graficul funcției este o parabolă:

Într-un caz special, care este o ecuație pătratică, . Aceasta înseamnă că rădăcinile unei ecuații pătratice sunt punctele de intersecție cu axa (axa) absciselor. O parabolă poate să nu intersecteze axa deloc sau o poate intersecta într-unul (când vârful parabolei se află pe axă) sau două puncte.

În plus, coeficientul este responsabil pentru direcția ramurilor parabolei. Dacă, atunci ramurile parabolei sunt îndreptate în sus, iar dacă, atunci în jos.

Exemple:

Solutii:

Răspuns:

Raspuns: .

Răspuns:

Asta înseamnă că nu există soluții.

Raspuns: .

2. Teorema lui Vieta

Este foarte ușor de folosit teorema lui Vieta: trebuie doar să alegeți o pereche de numere al căror produs este egal cu termenul liber al ecuației, iar suma este egală cu al doilea coeficient luat cu semnul opus.

Este important să ne amintim că teorema lui Vieta poate fi aplicată numai în ecuații pătratice reduse ().

Să ne uităm la câteva exemple:

Exemplul #1:

Rezolvați ecuația.

Soluţie:

Această ecuație poate fi rezolvată folosind teorema lui Vieta deoarece . Alți coeficienți: ; .

Suma rădăcinilor ecuației este:

Și produsul este egal cu:

Să selectăm perechi de numere al căror produs este egal și să verificăm dacă suma lor este egală:

  • Şi. Suma este egală cu;
  • Şi. Suma este egală cu;
  • Şi. Suma este egală.

și sunt soluția pentru sistem:

Astfel, și sunt rădăcinile ecuației noastre.

Raspuns: ; .

Exemplul #2:

Soluţie:

Să selectăm perechi de numere care dau în produs și apoi să verificăm dacă suma lor este egală:

si: dau in total.

si: dau in total. Pentru a obține, este suficient să schimbați pur și simplu semnele presupuselor rădăcini: și, la urma urmei, produsul.

Răspuns:

Exemplul #3:

Soluţie:

Termenul liber al ecuației este negativ și, prin urmare, produsul rădăcinilor este număr negativ. Acest lucru este posibil numai dacă una dintre rădăcini este negativă, iar cealaltă este pozitivă. Prin urmare, suma rădăcinilor este egală cu diferențele modulelor lor.

Să selectăm astfel de perechi de numere care dau în produs și a căror diferență este egală cu:

și: diferența lor este egală - nu se potrivește;

și: - nu este adecvat;

și: - nu este adecvat;

și: - potrivite. Tot ce rămâne este să ne amintim că una dintre rădăcini este negativă. Deoarece suma lor trebuie să fie egală, rădăcina cu un modul mai mic trebuie să fie negativă: . Verificăm:

Răspuns:

Exemplul #4:

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Termenul liber este negativ și, prin urmare, produsul rădăcinilor este negativ. Și acest lucru este posibil numai atunci când o rădăcină a ecuației este negativă, iar cealaltă este pozitivă.

Să selectăm perechi de numere al căror produs este egal și apoi să determinăm care rădăcini ar trebui să aibă semn negativ:

Evident, doar rădăcinile și sunt potrivite pentru prima condiție:

Răspuns:

Exemplul #5:

Rezolvați ecuația.

Soluţie:

Ecuația este dată, ceea ce înseamnă:

Suma rădăcinilor este negativă, ceea ce înseamnă că cel puțin una dintre rădăcini este negativă. Dar, deoarece produsul lor este pozitiv, înseamnă că ambele rădăcini au semnul minus.

Să selectăm perechi de numere al căror produs este egal cu:

Evident, rădăcinile sunt numerele și.

Răspuns:

De acord, este foarte convenabil să veniți cu rădăcini oral, în loc să numărați acest discriminant urât. Încercați să utilizați teorema lui Vieta cât mai des posibil.

Dar teorema lui Vieta este necesară pentru a facilita și accelera găsirea rădăcinilor. Pentru a beneficia de pe urma folosirii lui, trebuie să aduci acțiunile la automatitate. Și pentru asta, rezolvă încă cinci exemple. Dar nu înșela: nu poți folosi un discriminant! Doar teorema lui Vieta:

Soluții la sarcini pentru munca independentă:

Sarcina 1. ((x)^(2))-8x+12=0

Conform teoremei lui Vieta:

Ca de obicei, începem selecția cu piesa:

Nu este potrivit pentru că suma;

: suma este exact ceea ce ai nevoie.

Raspuns: ; .

Sarcina 2.

Și din nou teorema noastră preferată Vieta: suma trebuie să fie egală, iar produsul trebuie să fie egal.

Dar din moment ce nu trebuie să fie, dar, schimbăm semnele rădăcinilor: și (în total).

Raspuns: ; .

Sarcina 3.

Hmm... Unde este asta?

Trebuie să mutați toți termenii într-o singură parte:

Suma rădăcinilor este egală cu produsul.

Bine, oprește-te! Ecuația nu este dată. Dar teorema lui Vieta este aplicabilă numai în ecuațiile date. Deci mai întâi trebuie să dați o ecuație. Dacă nu poți conduce, renunță la această idee și rezolvă în alt mod (de exemplu, printr-un discriminant). Permiteți-mi să vă reamintesc că a da o ecuație pătratică înseamnă a egaliza coeficientul principal:

Mare. Apoi suma rădăcinilor este egală cu și produsul.

Aici este la fel de ușor ca decojirea perelor să alegi: la urma urmei, este un număr prim (scuze pentru tautologie).

Raspuns: ; .

Sarcina 4.

Membrul liber este negativ. Ce e special la asta? Și adevărul este că rădăcinile vor avea semne diferite. Și acum, în timpul selecției, verificăm nu suma rădăcinilor, ci diferența dintre modulele lor: această diferență este egală, dar un produs.

Deci, rădăcinile sunt egale cu și, dar una dintre ele este minus. Teorema lui Vieta ne spune că suma rădăcinilor este egală cu al doilea coeficient cu semnul opus, adică. Aceasta înseamnă că rădăcina mai mică va avea un minus: și, din moment ce.

Raspuns: ; .

Sarcina 5.

Ce ar trebui să faci mai întâi? Așa este, dați ecuația:

Din nou: selectăm factorii numărului, iar diferența lor ar trebui să fie egală cu:

Rădăcinile sunt egale cu și, dar una dintre ele este minus. Care? Suma lor ar trebui să fie egală, ceea ce înseamnă că minusul va avea o rădăcină mai mare.

Raspuns: ; .

Lasă-mă să rezum:
  1. Teorema lui Vieta este folosită numai în ecuațiile pătratice date.
  2. Folosind teorema lui Vieta, puteți găsi rădăcinile prin selecție, oral.
  3. Dacă ecuația nu este dată sau nu este găsită nicio ecuație pereche potrivită multiplicatori ai termenului liber, ceea ce înseamnă că nu există rădăcini întregi și trebuie să-l rezolvați într-un alt mod (de exemplu, printr-un discriminant).

3. Metoda de selectare a unui pătrat complet

Dacă toți termenii care conțin necunoscutul sunt reprezentați sub formă de termeni din formule de înmulțire prescurtate - pătratul sumei sau al diferenței - atunci după înlocuirea variabilelor, ecuația poate fi prezentată sub forma unei ecuații pătratice incomplete de tipul.

De exemplu:

Exemplul 1:

Rezolvați ecuația: .

Soluţie:

Răspuns:

Exemplul 2:

Rezolvați ecuația: .

Soluţie:

Răspuns:

ÎN vedere generală transformarea va arata astfel:

Urmează: .

Nu-ți aduce aminte de nimic? Acesta este un lucru discriminatoriu! Exact așa am obținut formula discriminantă.

ECUATII CADRATE. SCURT DESPRE LUCRURILE PRINCIPALE

Ecuație cuadratică- aceasta este o ecuație de formă, unde - necunoscutul, - coeficienții ecuației pătratice, - termenul liber.

Ecuație pătratică completă- o ecuație în care coeficienții nu sunt egali cu zero.

Ecuație pătratică redusă- o ecuaţie în care coeficientul, adică: .

Ecuație pătratică incompletă- o ecuație în care coeficientul și/sau termenul liber c sunt egali cu zero:

  • dacă coeficientul, ecuația arată astfel: ,
  • dacă există un termen liber, ecuația are forma: ,
  • dacă și, ecuația arată astfel: .

1. Algoritm pentru rezolvarea ecuațiilor pătratice incomplete

1.1. O ecuație pătratică incompletă de forma, unde:

1) Să exprimăm necunoscutul: ,

2) Verificați semnul expresiei:

  • dacă, atunci ecuația nu are soluții,
  • dacă, atunci ecuația are două rădăcini.

1.2. O ecuație pătratică incompletă de forma, unde:

1) Să scoatem factorul comun din paranteze: ,

2) Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Prin urmare, ecuația are două rădăcini:

1.3. O ecuație pătratică incompletă de forma, unde:

Această ecuație are întotdeauna o singură rădăcină: .

2. Algoritm pentru rezolvarea ecuaţiilor pătratice complete de forma unde

2.1. Soluție folosind discriminant

1) Să aducem ecuația la forma standard: ,

2) Să calculăm discriminantul folosind formula: , care indică numărul de rădăcini ale ecuației:

3) Aflați rădăcinile ecuației:

  • dacă, atunci ecuația are rădăcini, care se găsesc prin formula:
  • dacă, atunci ecuația are o rădăcină, care se găsește prin formula:
  • dacă, atunci ecuația nu are rădăcini.

2.2. Rezolvare folosind teorema lui Vieta

Suma rădăcinilor ecuației pătratice reduse (ecuația formei unde) este egală, iar produsul rădăcinilor este egal, i.e. , A.

2.3. Rezolvare prin metoda selectării unui pătrat complet

Cu acest program de matematică poți rezolva ecuația pătratică.

Programul nu numai că oferă răspunsul la problemă, dar afișează și procesul de rezolvare în două moduri:
- folosirea unui discriminant
- folosind teorema lui Vieta (dacă este posibil).

Mai mult, răspunsul este afișat ca exact, nu aproximativ.
De exemplu, pentru ecuația \(81x^2-16x-1=0\) răspunsul este afișat în următoarea formă:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ și nu așa: \(x_1 = 0,247; \quad x_2 = -0,05\)

Acest program poate fi de folos elevilor de liceu scoli mediiîn pregătire pentru testeși examene, la testarea cunoștințelor înainte de Examenul de stat unificat, pentru ca părinții să controleze rezolvarea multor probleme de matematică și algebră.

Sau poate este prea scump pentru tine să angajezi un tutor sau să cumperi manuale noi? Sau vrei doar să-ți faci temele de matematică sau algebră cât mai repede posibil? În acest caz, puteți folosi și programele noastre cu soluții detaliate. În acest fel, vă puteți conduce propriul antrenament și/sau antrenament al dvs. frati mai mici

sau surori, în timp ce nivelul de educație în domeniul problemelor în curs de rezolvare crește.

Dacă nu sunteți familiarizat cu regulile de introducere a unui polinom pătratic, vă recomandăm să vă familiarizați cu acestea.

Reguli pentru introducerea unui polinom pătratic
Orice literă latină poate acționa ca o variabilă.

De exemplu: \(x, y, z, a, b, c, o, p, q\), etc.
Numerele pot fi introduse ca numere întregi sau fracționale. În plus, numere fracționare

poate fi introdus nu numai ca zecimală, ci și ca fracție obișnuită.
Reguli pentru introducerea fracțiilor zecimale.
În fracțiile zecimale, partea fracțională poate fi separată de întreaga parte fie prin punct, fie prin virgulă. De exemplu, puteți intra zecimale

astfel: 2,5x - 3,5x^2
Reguli pentru introducerea fracțiilor obișnuite.

Doar un număr întreg poate acționa ca numărător, numitor și parte întreagă a unei fracții.

Numitorul nu poate fi negativ. /
Când introduceți o fracție numerică, numărătorul este separat de numitor printr-un semn de împărțire: &
Întreaga parte este separată de fracție prin semnul și:
Intrare: 3&1/3 - 5&6/5z +1/7z^2

Rezultat: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\) La introducerea unei expresii poti folosi paranteze
. În acest caz, la rezolvarea unei ecuații pătratice, expresia introdusă este mai întâi simplificată.


=0
Exemplu: x^2+2x-1

Decide
S-a descoperit că unele scripturi necesare pentru a rezolva această problemă nu au fost încărcate și este posibil ca programul să nu funcționeze.
Este posibil să aveți AdBlock activat.

În acest caz, dezactivați-l și reîmprospătați pagina.
JavaScript este dezactivat în browserul dvs.
Pentru ca soluția să apară, trebuie să activați JavaScript.

Deoarece Există o mulțime de oameni dispuși să rezolve problema, cererea dvs. a fost pusă în coadă.
În câteva secunde soluția va apărea mai jos.
Va rugam asteptati sec...


Dacă tu observat o eroare în soluție, apoi puteți scrie despre asta în Formularul de feedback.
Nu uita indicați ce sarcină tu decizi ce intra in campuri.



Jocurile, puzzle-urile, emulatorii noștri:

Puțină teorie.

Ecuația pătratică și rădăcinile ei. Ecuații patratice incomplete

Fiecare dintre ecuații
\(-x^2+6x+1.4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
arata ca
\(ax^2+bx+c=0, \)
unde x este o variabilă, a, b și c sunt numere.
În prima ecuație a = -1, b = 6 și c = 1,4, în a doua a = 8, b = -7 și c = 0, în a treia a = 1, b = 0 și c = 4/9. Astfel de ecuații se numesc ecuații pătratice.

Definiţie.
Ecuație cuadratică se numește ecuație de forma ax 2 +bx+c=0, unde x este o variabilă, a, b și c sunt niște numere și \(a \neq 0 \).

Numerele a, b și c sunt coeficienții ecuației pătratice. Numărul a se numește primul coeficient, numărul b este al doilea coeficient, iar numărul c este termenul liber.

În fiecare dintre ecuațiile de forma ax 2 +bx+c=0, unde \(a\neq 0\), cea mai mare putere a variabilei x este un pătrat. De aici și numele: ecuație pătratică.

Rețineți că o ecuație pătratică se mai numește și ecuație de gradul doi, deoarece partea stângă este un polinom de gradul doi.

Se numește o ecuație pătratică în care coeficientul lui x 2 este egal cu 1 ecuație pătratică dată. De exemplu, ecuațiile pătratice date sunt ecuațiile
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Dacă într-o ecuație pătratică ax 2 +bx+c=0 cel puțin unul dintre coeficienții b sau c este egal cu zero, atunci o astfel de ecuație se numește ecuație pătratică incompletă. Astfel, ecuațiile -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 sunt ecuații patratice incomplete. În primul dintre ele b=0, în al doilea c=0, în al treilea b=0 și c=0.

Există trei tipuri de ecuații pătratice incomplete:
1) ax 2 +c=0, unde \(c \neq 0 \);
2) ax 2 +bx=0, unde \(b \neq 0 \);
3) ax 2 =0.

Să luăm în considerare rezolvarea ecuațiilor fiecăruia dintre aceste tipuri.

Pentru a rezolva o ecuație pătratică incompletă de forma ax 2 +c=0 pentru \(c \neq 0 \), mutați termenul său liber în partea dreaptă și împărțiți ambele părți ale ecuației la a:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Deoarece \(c \neq 0 \), atunci \(-\frac(c)(a) \neq 0 \)

Dacă \(-\frac(c)(a)>0\), atunci ecuația are două rădăcini.

Dacă \(-\frac(c)(a) Pentru a rezolva o ecuație pătratică incompletă de forma ax 2 +bx=0 cu \(b \neq 0 \) factorizează partea stângă și obținem ecuația
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (matrice)(l) x=0 \\ x=-\frac(b)(a) \end(matrice) \right.

Aceasta înseamnă că o ecuație pătratică incompletă de forma ax 2 +bx=0 pentru \(b \neq 0 \) are întotdeauna două rădăcini.

O ecuație pătratică incompletă de forma ax 2 =0 este echivalentă cu ecuația x 2 =0 și, prin urmare, are o singură rădăcină 0.

Formula pentru rădăcinile unei ecuații pătratice

Să ne gândim acum cum să rezolvăm ecuații pătratice în care atât coeficienții necunoscutelor, cât și termenul liber sunt nenuli.

Să rezolvăm ecuația pătratică în formă generală și ca rezultat obținem formula rădăcinilor. Această formulă poate fi apoi utilizată pentru a rezolva orice ecuație pătratică.

Rezolvați ecuația pătratică ax 2 +bx+c=0

Împărțind ambele părți la a, obținem ecuația pătratică redusă echivalentă
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Să transformăm această ecuație selectând pătratul binomului:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Expresia radicală se numește discriminant al unei ecuații pătratice ax 2 +bx+c=0 („discriminant” în latină - discriminator). Este desemnat prin litera D, i.e.
\(D = b^2-4ac\)

Acum, folosind notația discriminantă, rescriem formula pentru rădăcinile ecuației pătratice:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), unde \(D= b^2-4ac \)

Este evident că:
1) Dacă D>0, atunci ecuația pătratică are două rădăcini.
2) Dacă D=0, atunci ecuația pătratică are o rădăcină \(x=-\frac(b)(2a)\).
3) Dacă D Astfel, în funcție de valoarea discriminantului, o ecuație pătratică poate avea două rădăcini (pentru D > 0), o rădăcină (pentru D = 0) sau să nu aibă rădăcini (pentru D Când se rezolvă o ecuație pătratică folosind aceasta formula, este recomandabil să procedați în felul următor:
1) calculați discriminantul și comparați-l cu zero;
2) dacă discriminantul este pozitiv sau egal cu zero, atunci folosiți formula rădăcinii dacă discriminantul este negativ, atunci scrieți că nu există rădăcini;

teorema lui Vieta

Ecuația pătratică dată ax 2 -7x+10=0 are rădăcinile 2 și 5. Suma rădăcinilor este 7, iar produsul este 10. Vedem că suma rădăcinilor este egală cu al doilea coeficient luat cu opusul semn, iar produsul rădăcinilor este egal cu termenul liber. Orice ecuație pătratică redusă care are rădăcini are această proprietate.

Suma rădăcinilor ecuației pătratice reduse este egală cu al doilea coeficient luat cu semnul opus, iar produsul rădăcinilor este egal cu termenul liber.

Aceste. Teorema lui Vieta afirmă că rădăcinile x 1 și x 2 ale ecuației pătratice reduse x 2 +px+q=0 au proprietatea:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Publicații pe această temă