Cele mai mari și cele mai mici valori ale unei funcții a două variabile într-o regiune închisă. Cea mai mare și cea mai mică valoare a unei funcții

În acest articol voi vorbi despre algoritm pentru găsirea celei mai mari și mai mici valori funcții, puncte minime și maxime.

Din teorie, cu siguranță ne va fi de folos tabel de derivateŞi reguli de diferențiere. Totul este pe acest platou:

Algoritm pentru găsirea celei mai mari și mai mici valori.

Este mai convenabil pentru mine să explic cu un exemplu concret. Luați în considerare:

Exemplu: Găsiți cea mai mare valoare a funcției y=x^5+20x^3–65x pe segmentul [–4;0].

Pasul 1. Luăm derivata.

Y" = (x^5+20x^3–65x)" = 5x^4 + 20*3x^2 - 65 = 5x^4 + 60x^2 - 65

Pasul 2. Găsirea punctelor extreme.

Punct extrem numim acele puncte la care functia atinge valoarea sa cea mai mare sau minima.

Pentru a găsi punctele extreme, trebuie să echivalați derivata funcției cu zero (y" = 0)

5x^4 + 60x^2 - 65 = 0

Acum rezolvăm această ecuație biquadratică și rădăcinile găsite sunt punctele noastre extreme.

Rezolv astfel de ecuații prin înlocuirea t = x^2, apoi 5t^2 + 60t - 65 = 0.

Să reducem ecuația cu 5, obținem: t^2 + 12t - 13 = 0

D = 12^2 - 4*1*(-13) = 196

T_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

T_(2) = (-12 - sqrt(196))/2 = (-12 - 14)/2 = -13

Facem schimbarea inversă x^2 = t:

X_(1 și 2) = ±sqrt(1) = ±1
x_(3 și 4) = ±sqrt(-13) (excludem, nu poate exista numere negative, cu excepția cazului în care, desigur, vorbim despre numere complexe)

Total: x_(1) = 1 și x_(2) = -1 - acestea sunt punctele noastre extreme.

Pasul 3. Determinați cel mai mare și cea mai mică valoare.

Metoda de înlocuire.

În condiție, ni s-a dat segmentul [b][–4;0]. Punctul x=1 nu este inclus în acest segment. Deci nu luăm în considerare. Dar, pe lângă punctul x=-1, trebuie să luăm în considerare și limitele din stânga și din dreapta ale segmentului nostru, adică punctele -4 și 0. Pentru a face acest lucru, înlocuim toate aceste trei puncte în funcția originală. Rețineți că originalul este cel dat în condiția (y=x^5+20x^3–65x), unii oameni încep să îl înlocuiască în derivată...

Y(-1) = (-1)^5 + 20*(-1)^3 - 65*(-1) = -1 - 20 + 65 = [b]44
y(0) = (0)^5 + 20*(0)^3 - 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 - 65*(-4) = -1024 - 1280 + 260 = -2044

Aceasta înseamnă că cea mai mare valoare a funcției este [b]44 și se realizează în punctul [b]-1, care se numește punctul maxim al funcției pe segmentul [-4; 0].

Ne-am hotărât și am primit un răspuns, suntem grozavi, te poți relaxa. Dar oprește-te! Nu crezi că calcularea y(-4) este oarecum prea dificilă? În condiții de timp limitat, este mai bine să folosiți o altă metodă, o numesc astfel:

Prin intervale de constanță a semnelor.

Aceste intervale se găsesc pentru derivata funcției, adică pentru ecuația noastră biquadratică.

O fac așa. Desenez un segment regizat. Pun punctele: -4, -1, 0, 1. În ciuda faptului că 1 nu este inclus în segmentul dat, ar trebui totuși remarcat pentru a determina corect intervalele de constanță a semnului. Să luăm un număr de multe ori mai mare decât 1, să spunem 100, și să îl înlocuim mental în ecuația noastră biquadratică 5(100)^4 + 60(100)^2 - 65. Chiar și fără a număra nimic, devine evident că la punctul 100, funcția are semnul plus. Aceasta înseamnă că pentru intervalele de la 1 la 100 are un semn plus. Când trecem prin 1 (mergem de la dreapta la stânga), funcția va schimba semnul în minus. Când trece prin punctul 0, funcția își va păstra semnul, deoarece aceasta este doar granița segmentului și nu rădăcina ecuației. Când trece prin -1, funcția va schimba din nou semnul în plus.

Din teorie știm că unde este derivata funcției (și am desenat asta tocmai pentru aceasta) schimbă semnul de la plus la minus (punctul -1 în cazul nostru) funcția ajunge maximul său local (y(-1)=44, așa cum a fost calculat mai devreme) pe acest segment (asta logic este foarte de inteles, functia a incetat sa creasca pentru ca a ajuns la maxim si a inceput sa scada).

În consecință, unde derivata funcției schimbă semnul din minus în plus, se realizează minim local al unei funcții. Da, da, am găsit, de asemenea, că punctul minim local este 1, iar y(1) este valoarea minimă a funcției de pe segment, să spunem de la -1 la +∞. Vă rugăm să rețineți că acesta este doar un MINIM LOCAL, adică un minim pe un anumit segment. Deoarece minimul real (global) al funcției va ajunge undeva acolo, la -∞.

După părerea mea, prima metodă este mai simplă teoretic, iar a doua este mai simplă din punct de vedere al operațiilor aritmetice, dar mult mai complexă din punct de vedere al teoriei. La urma urmei, uneori există cazuri în care funcția nu își schimbă semnul la trecerea prin rădăcina ecuației și, în general, te poți confunda cu aceste maxime și minime locale, globale, deși oricum va trebui să stăpânești bine acest lucru dacă intenționați să intrați într-o universitate tehnică (și pentru ce altceva ar trebui să o iau? profil Examen de stat unificatși rezolvați această problemă). Dar practica și numai practica te va învăța să rezolvi astfel de probleme odată pentru totdeauna. Și vă puteți antrena pe site-ul nostru. Aici .

Dacă aveți întrebări sau ceva neclar, asigurați-vă că întrebați. Voi fi bucuros să vă răspund și să fac modificări și completări articolului. Amintiți-vă că facem acest site împreună!

Fie ca funcția $z=f(x,y)$ să fie definită și continuă în unele mărginite zonă închisă$D$. Lăsați în această zonă pentru această funcție are derivate parțiale finite de ordinul întâi (cu excepția, poate, a unui număr finit de puncte). Pentru a găsi cele mai mari și cele mai mici valori ale unei funcții a două variabile într-o regiune închisă dată, sunt necesari trei pași ai unui algoritm simplu.

Algoritm pentru găsirea celor mai mari și mai mici valori ale funcției $z=f(x,y)$ într-un domeniu închis $D$.

  1. Aflați punctele critice ale funcției $z=f(x,y)$ aparținând domeniului $D$. Calculați valorile funcției în punctele critice.
  2. Investigați comportamentul funcției $z=f(x,y)$ la limita regiunii $D$, găsind punctele valorilor maxime și minime posibile. Calculați valorile funcției la punctele obținute.
  3. Din valorile funcției obținute în cele două paragrafe precedente, selectați cel mai mare și cel mai mic.

Care sunt punctele critice? arată\ascunde

Sub puncte critice implică puncte la care ambele derivate parțiale de ordinul întâi sunt egale cu zero (adică $\frac(\partial z)(\partial x)=0$ și $\frac(\partial z)(\partial y)=0 $) sau cel puțin o derivată parțială nu există.

Adesea sunt numite punctele în care derivatele parțiale de ordinul întâi sunt egale cu zero punctele staţionare. Astfel, punctele staționare sunt un subset de puncte critice.

Exemplul nr. 1

Găsiți cele mai mari și cele mai mici valori ale funcției $z=x^2+2xy-y^2-4x$ într-o regiune închisă, limitat de linii$x=3$, $y=0$ și $y=x+1$.

Vom urma cele de mai sus, dar mai întâi ne vom ocupa de desenarea unei zone date, pe care o vom nota cu litera $D$. Suntem dat ecuații de trei linii drepte care limitează această zonă. Dreapta $x=3$ trece prin punctul $(3;0)$ paralel cu axa ordonatelor (axa Oy). Linia dreaptă $y=0$ este ecuația axei absciselor (axa Ox). Ei bine, pentru a construi dreapta $y=x+1$, vom găsi două puncte prin care vom trasa această dreaptă. Puteți, desigur, să înlocuiți câteva valori arbitrare în loc de $x$. De exemplu, înlocuind $x=10$, obținem: $y=x+1=10+1=11$. Am găsit punctul $(10;11)$ situat pe dreapta $y=x+1$. Totuși, este mai bine să găsiți acele puncte în care dreapta $y=x+1$ intersectează dreptele $x=3$ și $y=0$. De ce este mai bine? Pentru că vom ucide câteva păsări dintr-o singură piatră: vom obține două puncte pentru a construi linia dreaptă $y=x+1$ și, în același timp, vom afla în ce puncte intersectează această dreaptă alte linii care limitează aria dată. Linia $y=x+1$ intersectează linia $x=3$ în punctul $(3;4)$, iar linia $y=0$ se intersectează în punctul $(-1;0)$. Pentru a nu aglomera mersul soluției cu explicații auxiliare, voi pune problema obținerii acestor două puncte într-o notă.

Cum au fost obținute punctele $(3;4)$ și $(-1;0)$? arată\ascunde

Să începem de la punctul de intersecție al dreptelor $y=x+1$ și $x=3$. Coordonatele punctului dorit aparțin atât primei, cât și celei de a doua drepte, prin urmare, pentru a găsi coordonatele necunoscute, trebuie să rezolvați sistemul de ecuații:

$$ \left \( \begin(aligned) & y=x+1;\\ & x=3. \end(aligned) \right. $$

Solutia unui astfel de sistem este banala: substituind $x=3$ in prima ecuatie vom avea: $y=3+1=4$. Punctul $(3;4)$ este punctul de intersecție dorit al dreptelor $y=x+1$ și $x=3$.

Acum să găsim punctul de intersecție al dreptelor $y=x+1$ și $y=0$. Să compunem și să rezolvăm din nou sistemul de ecuații:

$$ \left \( \begin(aligned) & y=x+1;\\ & y=0. \end(aligned) \right. $$

Înlocuind $y=0$ în prima ecuație, obținem: $0=x+1$, $x=-1$. Punctul $(-1;0)$ este punctul de intersecție dorit al dreptelor $y=x+1$ și $y=0$ (axa absciselor).

Totul este gata pentru a construi un desen care va arăta astfel:

Întrebarea notei pare evidentă, pentru că totul se vede din poză. Cu toate acestea, merită să ne amintim că un desen nu poate servi drept dovadă. Desenul are doar scop ilustrativ.

Zona noastră a fost definită folosind ecuații în linie dreaptă care o legau. Evident, aceste linii definesc un triunghi, nu? Sau nu este complet evident? Sau poate ni se oferă o zonă diferită, delimitată de aceleași linii:

Desigur, condiția spune că zona este închisă, așa că poza afișată este incorectă. Dar pentru a evita astfel de ambiguități, este mai bine să definiți regiunile prin inegalități. Suntem interesați de partea de plan situată sub dreapta $y=x+1$? Ok, deci $y ≤ x+1$. Zona noastră ar trebui să fie situată deasupra liniei $y=0$? Grozav, asta înseamnă $y ≥ 0$. Apropo, ultimele două inegalități pot fi ușor combinate într-una singură: $0 ≤ y ≤ x+1$.

$$ \left \( \begin(aligned) & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end(aligned) \right. $$

Aceste inegalități definesc regiunea $D$ și o definesc fără ambiguitate, fără a permite nicio ambiguitate. Dar cum ne ajută acest lucru cu întrebarea formulată la începutul notei? De asemenea, va ajuta :) Trebuie să verificăm dacă punctul $M_1(1;1)$ aparține regiunii $D$. Să substituim $x=1$ și $y=1$ în sistemul de inegalități care definesc această regiune. Dacă ambele inegalități sunt satisfăcute, atunci punctul se află în interiorul regiunii. Dacă cel puțin una dintre inegalități nu este satisfăcută, atunci punctul nu aparține regiunii. Aşa:

$$ \left \( \begin(aligned) & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end(aligned) \right. \;\; \left \( \begin(aligned) & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end(aligned) \right $$.

Ambele inegalități sunt valabile. Punctul $M_1(1;1)$ aparține regiunii $D$.

Acum este timpul să studiem comportamentul funcției la limita regiunii, adică. hai sa mergem la . Să începem cu linia dreaptă $y=0$.

Linia dreaptă $y=0$ (axa absciselor) limitează regiunea $D$ în condiția $-1 ≤ x ≤ 3$. Să substituim $y=0$ în funcţie dată$z(x,y)=x^2+2xy-y^2-4x$. Notăm funcția unei variabile $x$ obținută ca rezultat al înlocuirii ca $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Acum, pentru funcția $f_1(x)$ trebuie să găsim cele mai mari și cele mai mici valori pe intervalul $-1 ≤ x ≤ 3$. Să găsim derivata acestei funcții și să o echivalăm cu zero:

$$ f_(1)^(")(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Valoarea $x=2$ aparține segmentului $-1 ≤ x ≤ 3$, așa că vom adăuga și $M_2(2;0)$ la lista de puncte. În plus, să calculăm valorile funcției $z$ la capetele segmentului $-1 ≤ x ≤ 3$, adică. în punctele $M_3(-1;0)$ și $M_4(3;0)$. Apropo, dacă punctul $M_2$ nu ar aparține segmentului luat în considerare, atunci, desigur, nu ar fi nevoie să se calculeze valoarea funcției $z$ din acesta.

Deci, să calculăm valorile funcției $z$ în punctele $M_2$, $M_3$, $M_4$. Puteți, desigur, să înlocuiți coordonatele acestor puncte în expresia originală $z=x^2+2xy-y^2-4x$. De exemplu, pentru punctul $M_2$ obținem:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Cu toate acestea, calculele pot fi puțin simplificate. Pentru a face acest lucru, merită să ne amintim că pe segmentul $M_3M_4$ avem $z(x,y)=f_1(x)$. Voi scrie asta în detaliu:

\begin(aligned) & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(- 1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)= 3^2-4\cdot 3=-3. \end(aliniat)

Desigur, de obicei nu este nevoie de astfel de înregistrări detaliate, iar în viitor vom nota pe scurt toate calculele:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Acum să trecem la linia dreaptă $x=3$. Această linie dreaptă limitează regiunea $D$ în condiția $0 ≤ y ≤ 4$. Să substituim $x=3$ în funcția dată $z$. Ca rezultat al acestei substituții obținem funcția $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Pentru funcția $f_2(y)$ trebuie să găsim cele mai mari și cele mai mici valori pe intervalul $0 ≤ y ≤ 4$. Să găsim derivata acestei funcții și să o echivalăm cu zero:

$$ f_(2)^(")(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Valoarea $y=3$ aparține segmentului $0 ≤ y ≤ 4$, așa că vom adăuga și $M_5(3;3)$ la punctele găsite anterior. În plus, este necesar să se calculeze valoarea funcției $z$ în punctele de la capetele segmentului $0 ≤ y ≤ 4$, adică. la punctele $M_4(3;0)$ și $M_6(3;4)$. La punctul $M_4(3;0)$ am calculat deja valoarea lui $z$. Să calculăm valoarea funcției $z$ în punctele $M_5$ și $M_6$. Permiteți-mi să vă reamintesc că pe segmentul $M_4M_6$ avem $z(x,y)=f_2(y)$, prin urmare:

\begin(aligned) & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end(aliniat)

Și, în cele din urmă, luați în considerare ultima graniță a regiunii $D$, adică. dreapta $y=x+1$. Această linie dreaptă limitează regiunea $D$ în condiția $-1 ≤ x ≤ 3$. Înlocuind $y=x+1$ în funcția $z$, vom avea:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Încă o dată avem o funcție a unei variabile $x$. Și din nou trebuie să găsim cele mai mari și cele mai mici valori ale acestei funcții pe intervalul $-1 ≤ x ≤ 3$. Să găsim derivata funcției $f_(3)(x)$ și să o echivalăm cu zero:

$$ f_(3)^(")(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Valoarea $x=1$ aparține intervalului $-1 ≤ x ≤ 3$. Dacă $x=1$, atunci $y=x+1=2$. Să adăugăm $M_7(1;2)$ la lista de puncte și să aflăm care este valoarea funcției $z$ în acest moment. Punctele de la capetele segmentului $-1 ≤ x ≤ 3$, i.e. punctele $M_3(-1;0)$ și $M_6(3;4)$ au fost luate în considerare mai devreme, am găsit deja valoarea funcției în ele.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Al doilea pas al soluției este finalizat. Am primit șapte valori:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Să ne întoarcem la. Alegând cele mai mari și cele mai mici valori dintre numerele obținute în al treilea paragraf, vom avea:

$$z_(min)=-4; \; z_(max)=6.$$

Problema este rezolvată, rămâne doar să notăm răspunsul.

Răspuns: $z_(min)=-4; \; z_(max)=6$.

Exemplul nr. 2

Găsiți cele mai mari și cele mai mici valori ale funcției $z=x^2+y^2-12x+16y$ în regiunea $x^2+y^2 ≤ 25$.

Mai întâi, să construim un desen. Ecuația $x^2+y^2=25$ (aceasta este linia de delimitare a unei zone date) definește un cerc cu un centru la origine (adică în punctul $(0;0)$) și o rază de 5. Inegalitatea $x^2 +y^2 ≤ $25 satisface toate punctele din interiorul și de pe cercul menționat.

Vom acționa conform. Să găsim derivate parțiale și să aflăm punctele critice.

$$ \frac(\partial z)(\partial x)=2x-12; \frac(\partial z)(\partial y)=2y+16. $$

Nu există puncte în care derivatele parțiale găsite să nu existe. Să aflăm în ce puncte ambele derivate parțiale sunt simultan egale cu zero, adică. haideti sa gasim puncte stationare.

$$ \left \( \begin(aligned) & 2x-12=0;\\ & 2y+16=0. \end(aligned) \right. \;\; \left \( \begin(aligned) & x =6;\\ & y=-8 \end(aliniat) \right $$.

Am obținut un punct staționar $(6;-8)$. Totuși, punctul găsit nu aparține regiunii $D$. Acest lucru este ușor de arătat fără a recurge măcar la desen. Să verificăm dacă inegalitatea $x^2+y^2 ≤ 25$ este valabilă, ceea ce definește regiunea noastră $D$. Dacă $x=6$, $y=-8$, atunci $x^2+y^2=36+64=100$, adică. inegalitatea $x^2+y^2 ≤ 25$ nu este valabilă. Concluzie: punctul $(6;-8)$ nu aparține zonei $D$.

Deci, nu există puncte critice în interiorul regiunii $D$. Să trecem la... Trebuie să studiem comportamentul funcției la limita unei zone date, i.e. pe cercul $x^2+y^2=25$. Putem, desigur, să exprimăm $y$ în termeni de $x$ și apoi să înlocuim expresia rezultată în funcția noastră $z$. Din ecuația unui cerc obținem: $y=\sqrt(25-x^2)$ sau $y=-\sqrt(25-x^2)$. Înlocuind, de exemplu, $y=\sqrt(25-x^2)$ în funcția dată, vom avea:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt(25-x^2)=25-12x+16\sqrt(25-x ^2); \;\; -5≤ x ≤ 5. $$

Soluția ulterioară va fi complet identică cu studiul comportamentului funcției la limita regiunii din exemplul precedent nr. 1. Totuși, mi se pare mai rezonabil să aplicăm metoda Lagrange în această situație. Ne va interesa doar prima parte a acestei metode. După aplicarea primei părți a metodei Lagrange, vom obține puncte la care vom examina funcția $z$ pentru valori minime și maxime.

Compunem funcția Lagrange:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2 -25). $$

Găsim derivatele parțiale ale funcției Lagrange și compunem sistemul de ecuații corespunzător:

$$ F_(x)^(")=2x-12+2\lambda x; \;\; F_(y)^(")=2y+16+2\lambda y.\\ \left \( \begin (aliniat) & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \left \( \begin(aligned) & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end( aligned)\right.$ $

Pentru a rezolva acest sistem, să subliniem imediat că $\lambda\neq -1$. De ce $\lambda\neq -1$? Să încercăm să înlocuim $\lambda=-1$ în prima ecuație:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Contradicția rezultată $0=6$ indică faptul că valoarea $\lambda=-1$ este inacceptabilă. Ieșire: $\lambda\neq -1$. Să exprimăm $x$ și $y$ în termeni de $\lambda$:

\begin(aligned) & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac(6)(1+\lambda). \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac(-8)(1+\lambda). \end(aliniat)

Cred că aici devine evident de ce am stipulat în mod specific condiția $\lambda\neq -1$. Acest lucru a fost făcut pentru a încadra expresia $1+\lambda$ în ​​numitori fără interferențe. Adică, pentru a fi sigur că numitorul $1+\lambda\neq 0$.

Să substituim expresiile rezultate pentru $x$ și $y$ în a treia ecuație a sistemului, adică. în $x^2+y^2=25$:

$$ \left(\frac(6)(1+\lambda) \right)^2+\left(\frac(-8)(1+\lambda) \right)^2=25;\\ \frac( 36)((1+\lambda)^2)+\frac(64)((1+\lambda)^2)=25;\\ \frac(100)((1+\lambda)^2)=25 ; \; (1+\lambda)^2=4. $$

Din egalitatea rezultată rezultă că $1+\lambda=2$ sau $1+\lambda=-2$. Astfel avem două valori ale parametrului $\lambda$ și anume: $\lambda_1=1$, $\lambda_2=-3$. În consecință, obținem două perechi de valori $x$ și $y$:

\begin(aligned) & x_1=\frac(6)(1+\lambda_1)=\frac(6)(2)=3; \; y_1=\frac(-8)(1+\lambda_1)=\frac(-8)(2)=-4. \\ & x_2=\frac(6)(1+\lambda_2)=\frac(6)(-2)=-3; \; y_2=\frac(-8)(1+\lambda_2)=\frac(-8)(-2)=4. \end(aliniat)

Deci, am obținut două puncte ale unui posibil extremum condiționat, i.e. $M_1(3;-4)$ și $M_2(-3;4)$. Să găsim valorile funcției $z$ în punctele $M_1$ și $M_2$:

\begin(aligned) & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end(aliniat)

Ar trebui să selectăm cele mai mari și cele mai mici valori dintre cele pe care le-am obținut în primul și al doilea pas. Dar în în acest caz, alegerea este mică :) Avem:

$$ z_(min)=-75; \; z_(max)=125. $$

Răspuns: $z_(min)=-75; \; z_(max)=125 USD.

Lasă funcția y =f(X) este continuă pe intervalul [ a, b]. După cum se știe, o astfel de funcție își atinge valorile maxime și minime pe acest segment. Funcția poate lua aceste valori fie în punctul intern al segmentului [ a, b], sau la limita segmentului.

Pentru a găsi cele mai mari și cele mai mici valori ale unei funcții pe segment [ a, b] necesar:

1) găsiți punctele critice ale funcției în intervalul ( a, b);

2) calculați valorile funcției la punctele critice găsite;

3) calculați valorile funcției la capetele segmentului, adică când x=Oși x = b;

4) dintre toate valorile calculate ale funcției, selectați cea mai mare și cea mai mică.

Exemplu. Găsiți cele mai mari și cele mai mici valori ale unei funcții

pe segment.

Găsirea punctelor critice:

Aceste puncte se află în interiorul segmentului; y(1) = ‒ 3; y(2) = ‒ 4; y(0) = ‒ 8; y(3) = 1;

la punct x= 3 și la punct x= 0.

Studiul unei funcții pentru convexitate și punct de inflexiune.

Funcţie y = f (x) numit convexăîntre ele (o, b) , dacă graficul său se află sub tangenta desenată în orice punct al acestui interval și este numit convex în jos (concav), dacă graficul său se află deasupra tangentei.

Se numește punctul prin care convexitatea este înlocuită cu concavitate sau invers punct de inflexiune.

Algoritm pentru examinarea convexității și a punctului de inflexiune:

1. Găsiți puncte critice de al doilea fel, adică puncte la care derivata a doua este egală cu zero sau nu există.

2. Trasează punctele critice pe dreapta numerică, împărțind-o în intervale. Aflați semnul derivatei a doua pe fiecare interval; dacă , atunci funcția este convexă în sus, dacă, atunci funcția este convexă în jos.

3. Dacă, la trecerea printr-un punct critic de al doilea fel, semnul se schimbă și în acest punct derivata a doua este egală cu zero, atunci acest punct este abscisa punctului de inflexiune. Găsiți-i ordonata.

Asimptotele graficului unei funcții. Studiul unei funcții pentru asimptote.

Definiţie. Asimptota graficului unei funcții se numește Drept, care are proprietatea că distanța de la orice punct de pe grafic la această linie tinde spre zero pe măsură ce punctul de pe grafic se mișcă nelimitat de la origine.

Există trei tipuri de asimptote: vertical, orizontal și înclinat.

Definiţie. Linia dreaptă se numește asimptotă verticală grafica functionala y = f(x), dacă cel puțin una dintre limitele unilaterale ale funcției în acest punct este egală cu infinit, adică

unde este punctul de discontinuitate al funcției, adică nu aparține domeniului definiției.

Exemplu.

D ( y) = (‒ ∞; 2) (2; + ∞)

x= 2 – punctul de rupere.

Definiţie. Drept y =O numit asimptotă orizontală grafica functionala y = f(x) la , dacă

Exemplu.

x

y

Definiţie. Drept y =kx +b (k≠ 0) se numește asimptotă oblică grafica functionala y = f(x) la , unde

Schema generala de studiere a functiilor si de construire a graficelor.

Algoritmul de cercetare a funcțieiy = f(x) :

1. Găsiți domeniul funcției D (y).

2. Găsiți (dacă este posibil) punctele de intersecție ale graficului cu axele de coordonate (dacă x= 0 și la y = 0).

3. Examinați uniformitatea și ciudatenia funcției ( y (x) = y (x) paritate; y(x) = y (x) ciudat).

4. Găsiți asimptotele graficului funcției.

5. Aflați intervalele de monotonitate ale funcției.

6. Aflați extremele funcției.

7. Aflați intervalele de convexitate (concavitate) și punctele de inflexiune ale graficului funcției.

8. Pe baza cercetărilor efectuate, construiți un grafic al funcției.

Exemplu. Explorați funcția și trasați graficul acesteia.

1) D (y) =

x= 4 – punct de rupere.

2) Când x = 0,

(0; ‒ 5) – punct de intersecție cu Oh.

La y = 0,

3) y(x)= funcţie vedere generală(nici par, nici impar).

4) Examinăm pentru asimptote.

a) verticală

b) orizontală

c) găsiți asimptotele oblice unde

‒ecuația de asimptotă oblică

5) În această ecuație nu este necesar să se găsească intervale de monotonitate ale funcției.

6)

Aceste puncte critice împart întregul domeniu de definire al funcției în intervalul (˗∞; ˗2), (˗2; 4), (4; 10) și (10; +∞). Este convenabil să prezentați rezultatele obținute sub forma următorului tabel.

Cum să găsiți cele mai mari și cele mai mici valori ale unei funcții pe un segment?

Pentru aceasta urmam un algoritm binecunoscut:

1 . Găsim funcțiile ODZ.

2 . Găsirea derivatei funcției

3 . Echivalarea derivatei cu zero

4 . Găsim intervalele peste care derivata își păstrează semnul, iar din ele determinăm intervalele de creștere și scădere a funcției:

Dacă pe intervalul I derivata funcției este 0" title="f^(prim)(x)>0">, то функция !} crește în acest interval.

Dacă pe intervalul I derivata funcției , atunci funcția scade în acest interval.

5 . Găsim punctele maxime și minime ale funcției.

ÎN în punctul maxim al funcției, derivata își schimbă semnul de la „+” la „-”.

ÎN punctul minim al funcțieiderivata își schimbă semnul din „-” în „+”.

6 . Găsim valoarea funcției la capetele segmentului,

  • apoi comparăm valoarea funcției la capetele segmentului și la punctele maxime și alegeți cea mai mare dintre ele dacă trebuie să găsiți cea mai mare valoare a funcției
  • sau comparați valoarea funcției la capetele segmentului și la punctele minime și alegeți cel mai mic dintre ele dacă trebuie să găsiți cea mai mică valoare a funcției

Totuși, în funcție de modul în care funcția se comportă pe segment, acest algoritm poate fi redus semnificativ.

Luați în considerare funcția . Graficul acestei funcții arată astfel:

Să ne uităm la câteva exemple de rezolvare a problemelor din Deschide banca sarcini pentru

1. Sarcina B15 (nr. 26695)

Pe segment.

1. Funcția este definită pentru toate valorile reale ale lui x

Evident, această ecuație nu are soluții, iar derivata este pozitivă pentru toate valorile lui x. În consecință, funcția crește și ia cea mai mare valoare la capătul drept al intervalului, adică la x=0.

Raspuns: 5.

2 . Sarcina B15 (nr. 26702)

Găsiți cea mai mare valoare a funcției pe segment.

1. Funcții ODZ title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Derivata este egală cu zero la , cu toate acestea, în aceste puncte nu își schimbă semnul:

Prin urmare, title="3/(cos^2(x))>=3">, значит, title="3/(cos^2(x))-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция !} crește și ia cea mai mare valoare la capătul drept al intervalului, la .

Pentru a face evident de ce derivata nu își schimbă semnul, transformăm expresia pentru derivată după cum urmează:

Title="y^(prim)=3/(cos^2(x))-3=(3-3cos^2(x))/(cos^2(x))=(3sin^2 (x))/(cos^2(x))=3tg^2(x)>=0">!}

Raspuns: 5.

3. Sarcina B15 (nr. 26708)

Găsiți cea mai mică valoare a funcției de pe segment.

1. Funcții ODZ: title="x(pi)/2+(pi)k, k(in)(bbZ)">!}

Să plasăm rădăcinile acestei ecuații pe cercul trigonometric.

Intervalul conține două numere: și

Să punem semne. Pentru a face acest lucru, determinăm semnul derivatei în punctul x=0: . La trecerea prin puncte și, derivata își schimbă semnul.

Să descriem schimbarea semnelor derivatei unei funcții pe linia de coordonate:

Evident, punctul este un punct minim (la care derivata își schimbă semnul de la „-” la „+”), iar pentru a găsi cea mai mică valoare a funcției pe segment, trebuie să comparați valorile funcției la punctul minim și la capătul din stânga segmentului, .

Să vedem cum să examinăm o funcție folosind un grafic. Rezultă că uitându-ne la grafic, putem afla tot ce ne interesează, și anume:

  • domeniul unei funcții
  • intervalul de funcții
  • zerouri ale funcției
  • intervale de creştere şi scădere
  • puncte maxime și minime
  • cea mai mare și cea mai mică valoare a unei funcții pe un segment.

Să clarificăm terminologia:

Abscisă este coordonata orizontală a punctului.
Ordonată- coordonata verticala.
Axa absciselor - axa orizontală, numită cel mai adesea axă.
axa Y- axa verticală, sau axa.

Argument- o variabilă independentă de care depind valorile funcției. Cel mai adesea indicat.
Cu alte cuvinte, alegem , înlocuim funcții în formulă și obținem .

Domeniul definiției funcții - setul acelor (și numai acelea) valori de argument pentru care există funcția.
Indicat prin: sau .

În figura noastră, domeniul de definire al funcției este segmentul. Pe acest segment este trasat graficul funcției. Acesta este singurul loc unde există această funcție.

Gama de funcții este setul de valori pe care le ia o variabilă. În figura noastră, acesta este un segment - de la cea mai mică la cea mai mare valoare.

Zerourile funcției- punctele în care valoarea funcției este zero, adică. În figura noastră, acestea sunt puncte și .

Valorile funcției sunt pozitive unde . În figura noastră acestea sunt intervalele și .
Valorile funcției sunt negative unde . Pentru noi, acesta este intervalul (sau intervalul) de la până la .

Cele mai importante concepte - funcţia crescătoare şi descrescătoare pe vreun platou. Ca set, puteți lua un segment, un interval, o uniune de intervale sau întreaga linie numerică.

Funcţie crește

Cu alte cuvinte, cu cât mai mult, cu atât mai mult, adică graficul merge la dreapta și în sus.

Funcţie scade pe o mulțime dacă pentru oricare și aparținând mulțimii, inegalitatea implică inegalitatea .

Pentru o funcție descrescătoare, o valoare mai mare corespunde unei valori mai mici. Graficul merge la dreapta și în jos.

În figura noastră, funcția crește pe interval și scade pe intervale și .

Să definim ce este punctele maxime și minime ale funcției.

Punct maxim- acesta este un punct intern al domeniului de definiție, astfel încât valoarea funcției din acesta este mai mare decât în ​​toate punctele suficient de apropiate de acesta.
Cu alte cuvinte, un punct maxim este un punct în care valoarea funcției Mai mult decât în ​​cele vecine. Acesta este un „deal” local pe diagramă.

În figura noastră există un punct maxim.

Punct minim- un punct intern al domeniului de definiție, astfel încât valoarea funcției din acesta să fie mai mică decât în ​​toate punctele suficient de apropiate de acesta.
Adică, punctul minim este astfel încât valoarea funcției din ea este mai mică decât în ​​vecinii săi. Aceasta este o „gaură” locală pe grafic.

În figura noastră există un punct minim.

Punctul este granița. Nu este un punct intern al domeniului definiției și, prin urmare, nu se potrivește definiției unui punct maxim. La urma urmei, nu are vecini în stânga. La fel, pe graficul nostru nu poate exista un punct minim.

Punctele maxime și minime împreună sunt numite punctele extreme ale funcției. În cazul nostru aceasta este și .

Ce trebuie să faceți dacă trebuie să găsiți, de exemplu, functie minima pe segment? În acest caz răspunsul este: . Deoarece functie minima este valoarea sa la punctul minim.

În mod similar, maximul funcției noastre este . Se ajunge la punctul .

Putem spune că extremele funcției sunt egale cu și .

Uneori problemele necesită găsirea cele mai mari și cele mai mici valori ale unei funcții pe un segment dat. Ele nu coincid neapărat cu extremele.

În cazul nostru cea mai mică valoare a funcției pe segment este egal și coincide cu minimul funcției. Dar valoarea sa cea mai mare pe acest segment este egală cu . Se ajunge la capătul stâng al segmentului.

În orice caz, cele mai mari și cele mai mici valori funcție continuă pe un segment sunt realizate fie la punctele extreme, fie la capetele segmentului.

Publicații pe această temă