Se vede caldura specifica de ardere a combustibilului. Ce să alegi: benzină sau motorină

Diverse tipuri combustibilii (solidi, lichizi si gazosi) se caracterizeaza prin proprietati generale si specifice. LA proprietăți generale combustibilii includ căldura specifică de ardere și umiditatea specifică includ conținutul de cenușă, conținutul de sulf (conținutul de sulf), densitatea, vâscozitatea și alte proprietăți.

Căldura specifică arderea combustibilului este cantitatea de căldură care este eliberată în timpul arderii complete a \(1\) kg de combustibil solid sau lichid sau a \(1\) m³ de combustibil gazos.

Valoarea energetică a unui combustibil este determinată în primul rând de căldura sa specifică de ardere.

Căldura specifică de ardere este notată cu litera \(q\). Unitatea de căldură specifică de ardere este \(1\) J/kg pentru combustibilii solizi și lichizi și \(1\) J/m³ pentru combustibilii gazoși.

Căldura specifică de ardere este determinată experimental folosind metode destul de complexe.

Tabelul 2. Căldura specifică de ardere a unor tipuri de combustibil.

Combustibil solid

Substanţă

Căldura specifică de ardere,

Cărbune brun
Cărbune
Lemn de foc uscat
Cale de lemn

Cărbune

Cărbune

gradul A-II

Cocs
Pudra
Turbă

Combustibil lichid

Combustibil gazos

(in conditii normale)

Substanţă

Căldura specifică de ardere,

Hidrogen
Producător de gaz
Gaz cocs
Gaz natural
Gaz

Din acest tabel este clar că căldura specifică de ardere a hidrogenului este cea mai mare, este egală cu \(120\) MJ/m³. Aceasta înseamnă că odată cu arderea completă a hidrogenului cu un volum de \(1\) m³, se eliberează \(120\) MJ \(=\)\(120\) ⋅ 10 6 J de energie.

Hidrogenul este unul dintre combustibilii cu o mare energie. În plus, produsul arderii hidrogenului este apa obișnuită, spre deosebire de alte tipuri de combustibil, unde produsele de ardere sunt dioxid de carbon și monoxid de carbon, cenușă și zgură de cuptor. Acest lucru face ca hidrogenul să fie cel mai ecologic combustibil.

Cu toate acestea, hidrogenul gazos este exploziv. În plus, are cea mai mică densitate în comparație cu alte gaze la aceeași temperatură și presiune, ceea ce creează dificultăți cu lichefierea hidrogenului și transportul acestuia.

Cantitatea totală de căldură \(Q\) eliberată în timpul arderii complete a \(m\) kg de combustibil solid sau lichid se calculează prin formula:

Cantitatea totală de căldură \(Q\) eliberată în timpul arderii complete a \(V\) m³ de combustibil gazos se calculează prin formula:

Umiditatea (conținutul de umiditate) al combustibilului își reduce puterea calorică, pe măsură ce consumul de căldură pentru evaporarea umidității crește și volumul produselor de ardere crește (datorită prezenței vaporilor de apă).
Conținutul de cenușă este cantitatea de cenușă produsă în timpul arderii minerale conținute în combustibil. Substanțele minerale conținute în combustibil reduc puterea calorică a acestuia, deoarece conținutul de componente combustibile scade (motivul principal), iar consumul de căldură pentru încălzirea și topirea masei minerale crește.
Conținutul de sulf (conținutul de sulf) se referă la un factor negativ al combustibilului, deoarece arderea acestuia produce gaze de dioxid de sulf care poluează atmosfera și distrug metalul. În plus, sulful conținut în combustibil trece parțial în metalul topit și în topitura de sticlă sudată, reducând calitatea acestora. De exemplu, pentru topirea cristalelor, a sticlelor optice și a altor sticle, nu puteți folosi combustibil care conține sulf, deoarece sulful reduce semnificativ proprietățile optice și culoarea sticlei.

ÎN această lecție vom învăța să calculăm cantitatea de căldură pe care o eliberează combustibilul în timpul arderii. În plus, vom lua în considerare caracteristicile combustibilului - căldura specifică de ardere.

Deoarece întreaga noastră viață se bazează pe mișcare, iar mișcarea se bazează în mare parte pe arderea combustibilului, studierea acestui subiect este foarte importantă pentru înțelegerea subiectului „Fenomene termice”.

După ce am studiat aspecte legate de cantitatea de căldură şi capacitatea termică specifică, haideți să luăm în considerare cantitatea de căldură degajată la arderea combustibilului.

Definiţie

Combustibil- o substanta care produce caldura in unele procese (combustie, reactii nucleare). Este o sursă de energie.

Combustibilul se întâmplă solide, lichide și gazoase(Fig. 1).

Orez. 1. Tipuri de combustibil

  • Combustibilii solizi includ cărbune și turbă.
  • Combustibilii lichizi includ petrol, benzină și alte produse petroliere.
  • Combustibilii gazoși includ gaz natural.
  • Separat, putem evidenția cele foarte comune în ultima vreme combustibil nuclear.

Arderea combustibilului este un proces chimic oxidativ. În timpul arderii, atomii de carbon se combină cu atomii de oxigen pentru a forma molecule. Ca urmare a acestui fapt, este eliberată energie, pe care o persoană o folosește în propriile scopuri (Fig. 2).

Orez. 2. Educație dioxid de carbon

Pentru a caracteriza combustibilul, se utilizează următoarea caracteristică: putere calorica. Puterea calorică arată cât de multă căldură este eliberată în timpul arderii combustibilului (Fig. 3). În fizică, puterea calorică corespunde conceptului căldura specifică de ardere a unei substanţe.

Orez. 3. Căldura specifică de ardere

Definiţie

Căldura specifică de ardere - mărime fizică, care caracterizează combustibilul, este numeric egal cu cantitatea de căldură care este eliberată în timpul arderii complete a combustibilului.

Căldura specifică de ardere este de obicei indicată cu litera . Unități de măsură:

Nu există o unitate de măsură, deoarece arderea combustibilului are loc la o temperatură aproape constantă.

Căldura specifică de ardere este determinată experimental folosind instrumente sofisticate. Cu toate acestea, există tabele speciale pentru rezolvarea problemelor. Mai jos vă prezentăm valorile căldurii specifice de ardere pentru unele tipuri de combustibil.

Substanţă

Tabelul 4. Căldura specifică de ardere a unor substanţe

Din valorile date este clar că în timpul arderii se eliberează o cantitate uriașă de căldură, astfel încât se folosesc unitățile de măsură (megajouli) și (gigajulii).

Pentru a calcula cantitatea de căldură eliberată în timpul arderii combustibilului, se utilizează următoarea formulă:

Aici: - masa combustibilului (kg), - căldura specifică de ardere a combustibilului ().

În concluzie, remarcăm că cea mai mare parte a combustibilului folosit de umanitate este stocată folosind energia solară. Cărbune, petrol, gaz - toate acestea s-au format pe Pământ datorită influenței Soarelui (Fig. 4).

Orez. 4. Formarea combustibilului

În lecția următoare vom vorbi despre legea conservării și transformării energiei în procese mecanice și termice.

Listăliteratură

  1. Gendenshtein L.E., Kaidalov A.B., Kozhevnikov V.B. / Ed. Orlova V.A., Roizena I.I. Fizica 8. - M.: Mnemosyne.
  2. Peryshkin A.V. Fizica 8. - M.: Butard, 2010.
  3. Fadeeva A.A., Zasov A.V., Kiselev D.F. Fizica 8. - M.: Iluminismul.
  1. Portalul de internet „festival.1september.ru” ()
  2. Portalul de internet „school.xvatit.com” ()
  3. Portalul de internet „stringer46.narod.ru” ()

Teme pentru acasă

Ce este combustibilul?

Acesta este o componentă sau un amestec de substanțe care sunt capabile de transformări chimice asociate cu eliberarea de căldură. Diferite tipuri Combustibilii diferă prin conținutul lor cantitativ de oxidant, care este folosit pentru a elibera energie termică.

Într-un sens larg, combustibilul este un purtător de energie, adică un tip potențial de energie potențială.

Clasificare

În prezent, tipurile de combustibil sunt împărțite în funcție de starea lor de agregare în lichid, solid și gazos.

Spre solid aspect natural includ piatră și lemn de foc, antracit. Brichetele, cocs, termoantracitul sunt tipuri de combustibil solid artificial.

Lichidele includ substanțe care conțin substanțe de origine organică. Componentele lor principale sunt: ​​oxigen, carbon, azot, hidrogen, sulf. Combustibilul lichid artificial va fi o varietate de rășini și păcură.

Este un amestec de diverse gaze: etilenă, metan, propan, butan. Pe lângă acestea, combustibilul gazos conține dioxid de carbon și monoxid de carbon, hidrogen sulfurat, azot, vapori de apă și oxigen.

Indicatoare de combustibil

Principalul indicator al arderii. Formula de determinare a puterii calorice este luată în considerare în termochimie. emit „combustibil standard”, ceea ce implică puterea calorică a 1 kilogram de antracit.

Uleiul de uz casnic este destinat arderii în dispozitive de încălzire de putere redusă, care sunt amplasate în spații rezidențiale, generatoare de căldură utilizate în agricultură pentru uscarea furajelor, conserve.

Căldura specifică de ardere a unui combustibil este o valoare care demonstrează cantitatea de căldură care este generată în timpul arderii complete a combustibilului cu un volum de 1 m 3 sau o masă de un kilogram.

Pentru măsurarea acestei valori se folosesc J/kg, J/m3, calorie/m3. Pentru determinarea căldurii de ardere se utilizează metoda calorimetriei.

Odată cu creșterea căldurii specifice de ardere a combustibilului, consumul specific de combustibil scade, iar coeficientul acțiune utilă rămâne neschimbată.

Căldura de ardere a substanțelor este cantitatea de energie eliberată în timpul oxidării unei substanțe solide, lichide sau gazoase.

Este determinată de compoziția chimică, precum și de starea de agregare a substanței combustibile.

Caracteristicile produselor de ardere

Puterile calorice mai mari și mai mici sunt legate de starea de agregare a apei în substanțele obținute în urma arderii combustibilului.

Puterea calorică mai mare este cantitatea de căldură eliberată în timpul arderii complete a unei substanțe. Această valoare include și căldura de condensare a vaporilor de apă.

Cea mai scăzută căldură de lucru de ardere este valoarea care corespunde degajării de căldură în timpul arderii fără a ține cont de căldura de condensare a vaporilor de apă.

Căldura latentă de condensare este cantitatea de energie de condensare a vaporilor de apă.

Relație matematică

Puterea calorică mai mare și mai mică sunt legate de următoarea relație:

QB = QH + k(W + 9H)

unde W este cantitatea în greutate (în %) de apă dintr-o substanță inflamabilă;

H este cantitatea de hidrogen (% din masă) din substanța combustibilă;

k - coeficient egal cu 6 kcal/kg

Metode de realizare a calculelor

Valorile calorice mai mari și mai mici sunt determinate prin două metode principale: calcul și experimental.

Calorimetrele sunt folosite pentru a efectua calcule experimentale. În primul rând, o probă de combustibil este arsă în el. Căldura care va fi eliberată este complet absorbită de apă. Având o idee despre masa apei, puteți determina prin modificarea temperaturii acesteia valoarea căldurii sale de ardere.

Această tehnică este considerată simplă și eficientă, necesită doar cunoașterea datelor de analiză tehnică.

În metoda de calcul, valorile calorice mai mari și mai mici sunt calculate folosind formula Mendeleev.

Q p H = 339C p +1030H p -109(O p -S p) - 25 W p (kJ/kg)

Se ia în considerare conținutul de carbon, oxigen, hidrogen, vapori de apă, sulf în compoziția de lucru (în procente). Cantitatea de căldură în timpul arderii se determină ținând cont de combustibilul echivalent.

Căldura de ardere a gazului face posibilă efectuarea unor calcule preliminare și determinarea eficienței utilizării unui anumit tip de combustibil.

Caracteristici de origine

Pentru a înțelege cât de multă căldură este eliberată atunci când un anumit combustibil este ars, este necesar să aveți o idee despre originea acestuia.

În natură există opțiuni diferite combustibili solizi, care diferă ca compoziție și proprietăți.

Formarea sa are loc în mai multe etape. Mai întâi se formează turba, apoi se obține cărbune maro și tare, apoi se formează antracitul. Principalele surse de formare a combustibilului solid sunt frunzele, lemnul și ace de pin. Când părți ale plantelor mor și sunt expuse la aer, ele sunt distruse de ciuperci și formează turbă. Acumularea sa se transformă într-o masă maro, apoi se obține gaz maro.

La hipertensiune arterialăși temperatură, gazul brun se transformă în cărbune, apoi combustibilul se acumulează sub formă de antracit.

Pe lângă materia organică, combustibilul conține balast suplimentar. Organic este considerat a fi acea parte care este formată din substanțe organice: hidrogen, carbon, azot, oxigen. Pe lângă aceste elemente chimice, conține balast: umiditate, cenușă.

Tehnologia de ardere implică separarea masei de lucru, uscată și combustibilă a combustibilului ars. Masa de lucru este combustibilul în forma sa originală furnizat consumatorului. Masa uscată este o compoziție în care nu există apă.

Compus

Cele mai valoroase componente sunt carbonul și hidrogenul.

Aceste elemente sunt conținute în orice tip de combustibil. În turbă și lemn, procentul de carbon ajunge la 58 la sută, în cărbune tare și brun - 80%, iar în antracit ajunge la 95 la sută din greutate. În funcție de acest indicator, cantitatea de căldură eliberată în timpul arderii combustibilului se modifică. Hidrogenul este al doilea cel mai important element al oricărui combustibil. Când se leagă de oxigen, formează umiditate, ceea ce reduce semnificativ valoarea termică a oricărui combustibil.

Procentul său variază de la 3,8 în șisturi petroliere la 11 în păcură. Oxigenul conținut în combustibil acționează ca balast.

Nu este un element chimic generator de căldură, prin urmare afectează negativ valoarea căldurii sale de ardere. Arderea azotului, conținut sub formă liberă sau legată în produsele de ardere, este considerată impurități nocive, prin urmare cantitatea acestuia este strict limitată.

Sulful este inclus în combustibil sub formă de sulfați, sulfuri și, de asemenea, ca gaze de dioxid de sulf. Când sunt hidratați, oxizii de sulf formează acid sulfuric, care distruge echipamentul cazanului și afectează negativ vegetația și organismele vii.

De aceea sulful este un element chimic a cărui prezență în combustibilul natural este extrem de nedorită. Dacă compușii de sulf intră în zona de lucru, aceștia provoacă otrăvire semnificativă a personalului de operare.

Există trei tipuri de cenușă în funcție de originea sa:

  • primar;
  • secundar;
  • terţiar

Specia primară este formată din minerale găsite în plante. Cenușa secundară se formează ca urmare a pătrunderii în timpul formării reziduuri vegetale nisip și pământ.

Cenușa terțiară apare în compoziția combustibilului în timpul extracției, depozitării și transportului. Cu depunerea semnificativă de cenușă, are loc o scădere a transferului de căldură pe suprafața de încălzire a unității cazanului, reducând cantitatea de transfer de căldură către apă din gaze. O cantitate mare de cenușă afectează negativ funcționarea cazanului.

În concluzie

Substanțele volatile au o influență semnificativă asupra procesului de ardere a oricărui tip de combustibil. Cu cât puterea lor este mai mare, cu atât volumul frontului de flăcări va fi mai mare. De exemplu, cărbunele și turba se aprind ușor, procesul este însoțit de pierderi minore de căldură. Cocsul care rămâne după îndepărtarea impurităților volatile conține doar compuși minerali și de carbon. În funcție de caracteristicile combustibilului, cantitatea de căldură se modifică semnificativ.

În funcție de compozitia chimica Există trei etape de formare a combustibilului solid: turbă, cărbune brun și cărbune.

Lemnul natural este folosit în instalațiile de cazane mici. Ei folosesc în principal așchii de lemn, rumeguș, plăci, scoarță, iar lemnul de foc în sine este folosit în cantități mici. În funcție de tipul de lemn, cantitatea de căldură generată variază semnificativ.

Pe măsură ce căldura de ardere scade, lemnul de foc capătă anumite avantaje: inflamabilitate rapidă, conținut minim de cenușă și absența urmelor de sulf.

Informațiile fiabile despre compoziția combustibilului natural sau sintetic, puterea calorică a acestuia, reprezintă o modalitate excelentă de a efectua calcule termochimice.

În prezent, există o oportunitate reală de a identifica acele opțiuni principale pentru combustibilii solizi, gazoși, lichizi care vor fi cei mai eficiente și mai ieftin de utilizat într-o anumită situație.

5. ECHILIBRUL TERMIC AL COMBUSTIEI

Să luăm în considerare metodele de calcul echilibru termic procesul de ardere a gazelor, lichidelor și combustibili solizi. Calculul se reduce la rezolvarea următoarelor probleme.

· Determinarea căldurii de ardere (puterea calorică) a combustibilului.

· Determinarea temperaturii teoretice de ardere.

5.1. Căldura de ardere

Reacțiile chimice sunt însoțite de eliberarea sau absorbția de căldură. Când căldura este eliberată, reacția se numește exotermă, iar când căldura este absorbită, se numește endotermă. Toate reacțiile de ardere sunt exoterme, iar produsele de ardere sunt compuși exotermi.

Eliberat (sau absorbit) în timpul curgerii reacție chimică căldura se numește căldură de reacție. În reacțiile exoterme este pozitiv, în reacțiile endoterme este negativ. Reacția de ardere este întotdeauna însoțită de eliberarea de căldură. Căldura de ardere Q g(J/mol) este cantitatea de căldură care este eliberată în timpul arderii complete a unui mol de substanță și transformării unei substanțe combustibile în produse de ardere completă. Molul este unitatea de bază SI a cantității unei substanțe. Un mol este cantitatea de substanță care conține același număr de particule (atomi, molecule etc.) ca și atomi în 12 g de izotop de carbon-12. Masa unei cantități de substanță egală cu 1 mol (moleculară sau masa molara) coincide numeric cu masa moleculară relativă a unei substanțe date.

De exemplu, greutatea moleculară relativă a oxigenului (O2) este 32, dioxidul de carbon (CO2) este 44, iar greutățile moleculare corespunzătoare vor fi M = 32 g/mol și M = 44 g/mol. Astfel, un mol de oxigen conține 32 de grame din această substanță, iar un mol de CO 2 conține 44 de grame de dioxid de carbon.

În calculele tehnice, nu căldura de ardere este cea mai des folosită. Q g, și puterea calorică a combustibilului Q(J/kg sau J/m3). Puterea calorică a unei substanțe este cantitatea de căldură degajată în timpul arderii complete a 1 kg sau 1 m 3 dintr-o substanță. Pentru lichide și solide calculul se efectuează la 1 kg, iar pentru cele gazoase - la 1 m 3.

Cunoașterea căldurii de ardere și a puterii calorice a combustibilului este necesară pentru a calcula temperatura de ardere sau de explozie, presiunea de explozie, viteza de propagare a flăcării și alte caracteristici. Q Puterea calorică a combustibilului se determină fie experimental, fie prin calcul. La determinarea experimentală a puterii calorifice, o masă dată de combustibil solid sau lichid este arsă într-o bombă calorimetrică, iar în cazul combustibilului gazos, într-un calorimetru cu gaz. Aceste instrumente măsoară căldura totală 0 eliberat în timpul arderii unei probe de combustibil cântărit m . Puterea calorică Q g

se gaseste prin formula
Relația dintre căldura de ardere și

puterea calorică a combustibilului

Pentru a stabili o legătură între căldura de ardere și puterea calorică a unei substanțe, este necesar să scrieți ecuația pentru reacția chimică de ardere.

Produsul arderii complete a carbonului este dioxidul de carbon:

C+O2 →CO2.

Produsul arderii complete a hidrogenului este apa:

2H2 +O2 →2H2O.

Produsul arderii complete a sulfului este dioxidul de sulf:

În acest caz, azotul, halogenii și alte elemente incombustibile sunt eliberate în formă liberă.

Substanță combustibilă - gaz

De exemplu, să calculăm puterea calorică a metanului CH4, pentru care căldura de ardere este egală cu . Puterea calorică=882.6 .

· Să determinăm greutatea moleculară a metanului în conformitate cu acesta formula chimica(CH 4):

M=1∙12+4∙1=16 g/mol.

· Să stabilim putere calorica 1 kg metan:

· Să aflăm volumul a 1 kg de metan, cunoscând densitatea lui ρ=0,717 kg/m3 în condiții normale:

.

· Să determinăm puterea calorică a 1 m 3 de metan:

Puterea calorică a oricăror gaze combustibile este determinată în mod similar. Pentru multe substanțe comune, căldura de ardere și valorile calorice au fost măsurate cu mare precizie și sunt date în literatura de referință relevantă. Iată un tabel cu valorile calorice ale unor substanțe gazoase (Tabelul 5.1). Magnitudinea Qîn acest tabel este dat în MJ/m 3 și în kcal/m 3, deoarece 1 kcal = 4,1868 kJ este adesea folosit ca unitate de căldură.

Tabelul 5.1

Puterea calorică a combustibililor gazoși

Substanţă

Acetilenă

Q

O substanță inflamabilă este un lichid sau solid

De exemplu, să calculăm puterea calorică a alcoolului etilic C 2 H 5 OH, pentru care căldura de ardere este . Puterea calorică= 1373,3 kJ/mol.

· Să determinăm greutatea moleculară a alcoolului etilic în conformitate cu formula sa chimică (C 2 H 5 OH):

M = 2∙12 + 5∙1 + 1∙16 + 1∙1 = 46 g/mol.

Să determinăm puterea calorică a 1 kg de alcool etilic:

Puterea calorică a oricărui combustibil lichid și solid este determinată în mod similar. În tabel 5.2 și 5.3 arată valorile calorice Q(MJ/kg și kcal/kg) pentru unele lichide și solide.

Tabelul 5.2

Puterea calorică a combustibililor lichizi

Substanţă

Alcool metilic

Etanol

Păcură, ulei

Q

Tabelul 5.3

Puterea calorică a combustibililor solizi

Substanţă

Copacul este proaspăt

Lemn uscat

Cărbune brun

Turba uscata

Antracit, cola

Q

formula lui Mendeleev

Dacă puterea calorică a combustibilului este necunoscută, atunci aceasta poate fi calculată folosind formula empirică propusă de D.I.

Mendeleev. Pentru a face acest lucru, trebuie să cunoașteți compoziția elementară a combustibilului (formula echivalentă a combustibilului), adică conținutul procentual al următoarelor elemente din acesta:

Oxigen (O);

Hidrogen (H);

Carbon (C);

sulf (S);

Cenușă (A);

Produsele arderii combustibilului conțin întotdeauna vapori de apă, care se formează atât din cauza prezenței umidității în combustibil, cât și în timpul arderii hidrogenului. Produsele de ardere reziduale părăsesc o instalație industrială la o temperatură peste punctul de rouă. Prin urmare, căldura care se eliberează în timpul condensării vaporilor de apă nu poate fi folosită în mod util și nu trebuie luată în considerare în calculele termice.

Puterea calorică netă este de obicei utilizată pentru calcul Q n combustibil, care ține cont de pierderile de căldură cu vaporii de apă. Pentru combustibilii solizi și lichizi valoarea Q n(MJ/kg) este determinată aproximativ de formula Mendeleev:

Q n=0.339+1.025+0.1085 – 0.1085 – 0.025, (5.1)

unde conținutul procentual (gr.%) al elementelor corespunzătoare din compoziția combustibilului este indicat în paranteze.

Această formulă ia în considerare căldura reacțiilor de combustie exotermă a carbonului, hidrogenului și sulfului (cu semnul plus). Oxigenul inclus în combustibil înlocuiește parțial oxigenul din aer, astfel încât termenul corespunzător din formula (5.1) este luat cu semnul minus. Când umiditatea se evaporă, căldura este consumată, astfel încât termenul corespunzător care conține W este luat și cu semnul minus.

O comparație a datelor calculate și experimentale privind puterea calorică a diferiților combustibili (lemn, turbă, cărbune, petrol) a arătat că calculul folosind formula Mendeleev (5.1) dă o eroare care nu depășește 10%.

Puterea calorică netă Q n(MJ/m3) de gaze combustibile uscate poate fi calculată cu suficientă precizie ca suma produselor din puterea calorică a componentelor individuale și conținutul procentual al acestora în 1 m3 de combustibil gazos.

Q n= 0,108[Н 2 ] + 0,126[СО] + 0,358[СН 4 ] + 0,5[С 2 Н 2 ] + 0,234[Н 2 S ]…, (5,2)

unde conținutul procentual (%) al gazelor corespunzătoare din amestec este indicat între paranteze.

În medie, puterea calorică a gazelor naturale este de aproximativ 53,6 MJ/m 3 . În gazele combustibile produse artificial, conținutul de metan CH4 este nesemnificativ. Principalele componente inflamabile sunt hidrogenul H2 și monoxidul de carbon CO. În gazul cuptorului de cocs, de exemplu, conținutul de H2 atinge (55 ÷ 60)%, iar puterea calorică mai mică a unui astfel de gaz ajunge la 17,6 MJ/m3. Gazul generator conține CO ~ 30% și H 2 ~ 15%, în timp ce puterea calorică inferioară a gazului generator este Q n= (5,2÷6,5) MJ/m3. Conținutul de CO și H2 în gazul de furnal este mai mic; magnitudinea Q n= (4,0÷4,2) MJ/m 3.

Să ne uităm la exemple de calcul al puterii calorice a substanțelor folosind formula Mendeleev.

Să determinăm puterea calorică a cărbunelui, a cărei compoziție elementară este dată în tabel. 5.4.

Tabelul 5.4

Compoziția elementară a cărbunelui

· Să le înlocuim pe cele date în tabel. 5.4 date în formula Mendeleev (5.1) (azotul N și cenușa A nu sunt incluse în această formulă, deoarece sunt substanțe inerte și nu participă la reacția de ardere):

Q n=0,339∙37,2+1,025∙2,6+0,1085∙0,6–0,1085∙12–0,025∙40=13,04 MJ/kg.

Să determinăm cantitatea de lemn de foc necesară pentru încălzirea a 50 de litri de apă de la 10° C la 100° C, dacă 5% din căldura degajată în timpul arderii este consumată pentru încălzire și capacitatea termică a apei. Cu=1 kcal/(kg∙grad) sau 4,1868 kJ/(kg∙grad). Compoziția elementară a lemnului de foc este dată în tabel. 5.5:

Tabelul 5.5

Compoziția elementară a lemnului de foc

· Să aflăm puterea calorică a lemnului de foc folosind formula Mendeleev (5.1):

Q n=0,339∙43+1,025∙7–0,1085∙41–0,025∙7= 17,12 MJ/kg.

· Să determinăm cantitatea de căldură consumată pentru încălzirea apei la arderea a 1 kg de lemn de foc (ținând cont de faptul că 5% din căldura (a = 0,05) degajată în timpul arderii este cheltuită pentru încălzirea acesteia):

Q 2 =a Q n=0,05·17,12=0,86 MJ/kg.

· Să determinăm cantitatea de lemn de foc necesară pentru a încălzi 50 de litri de apă de la 10° C la 100° C:

kg.

Astfel, pentru încălzirea apei sunt necesare aproximativ 22 kg de lemn de foc.

Se știe că sursa de energie folosită în industrie, transport, agricultură și viața de zi cu zi este combustibilul. Acestea sunt cărbunele, petrolul, turba, lemnul de foc, gazele naturale etc. Când arde combustibilul, se eliberează energie. Să încercăm să aflăm cum se eliberează energia în acest caz.

Să ne amintim structura moleculei de apă (Fig. 16, a). Este format dintr-un atom de oxigen și doi atomi de hidrogen. Dacă o moleculă de apă este împărțită în atomi, atunci este necesar să se depășească forțele de atracție dintre atomi, adică trebuie făcută muncă și, prin urmare, trebuie cheltuită energia. În schimb, dacă atomii se combină pentru a forma o moleculă, se eliberează energie.

Utilizarea combustibilului se bazează tocmai pe fenomenul de eliberare de energie atunci când atomii se unesc. De exemplu, atomii de carbon conținuți în combustibil se combină cu doi atomi de oxigen în timpul arderii (Fig. 16, b). În acest caz, se formează o moleculă de monoxid de carbon - dioxid de carbon - și se eliberează energie.

Orez. 16. Structura moleculelor:
a - apa; b - combinarea unui atom de carbon și a doi atomi de oxigen într-o moleculă de dioxid de carbon

Când calculează motoarele, inginerul trebuie să știe exact câtă căldură poate elibera combustibilul ars. Pentru a face acest lucru, este necesar să se determine experimental câtă căldură va fi eliberată în timpul arderii complete a aceleiași mase de combustibil de diferite tipuri.

    O cantitate fizică care arată cât de multă căldură este eliberată în timpul arderii complete a combustibilului cu o greutate de 1 kg se numește căldură specifică de ardere a combustibilului.

Căldura specifică de ardere este notă cu litera q. Unitatea de căldură specifică de ardere este 1 J/kg.

Căldura specifică de ardere este determinată experimental folosind instrumente destul de complexe.

Rezultatele datelor experimentale sunt prezentate în Tabelul 2.

Tabelul 2

Din acest tabel se poate observa că căldura specifică de ardere, de exemplu, a benzinei este de 4,6 10 7 J/kg.

Aceasta înseamnă că arderea completă a benzinei cu o greutate de 1 kg eliberează 4,6 10 7 J de energie.

Cantitatea totală de căldură Q eliberată în timpul arderii a m kg de combustibil se calculează prin formula

Întrebări

  1. Care este căldura specifică de ardere a combustibilului?
  2. În ce unități se măsoară căldura specifică de ardere a combustibilului?
  3. Ce înseamnă expresia „căldura specifică de ardere a combustibilului egală cu 1,4 10 7 J/kg”? Cum se calculează cantitatea de căldură eliberată în timpul arderii combustibilului?

Exercițiul 9

  1. Câtă căldură este eliberată în timpul arderii complete? cărbune greutate 15 kg; alcool cu ​​greutatea de 200 g?
  2. Câtă căldură va fi eliberată în timpul arderii complete a uleiului, a cărui masă este de 2,5 tone; kerosen, al cărui volum este de 2 litri și densitatea este de 800 kg / m 3?
  3. Când lemnul uscat a fost complet ars, s-a eliberat 50.000 kJ de energie. Ce masă de lemn a ars?

Exercita

Folosind Tabelul 2, construiți o diagramă cu bare pentru căldura specifică de ardere a lemnului de foc, alcoolului, uleiului, hidrogenului, alegând scara după cum urmează: lățimea dreptunghiului este de 1 celulă, înălțimea de 2 mm corespunde cu 10 J.

Publicații pe această temă