Пути метаболизма аминокислот в организме. Метаболизм аминокислот: получение энергии в виде АТФ, образование глюкозы и кетоновых тел


Предисловие

Белки составляют основу жизнедеятельности всех организмов, известных на нашей планете. Это сложноорганизованные орга–нические молекулы, которые имеют большую молекулярную массу и представляют собой биополимеры, состоящие из аминокислот. К биополимерам клетки также относятся нуклеиновые кислоты – ДНК и РНК, которые являются результатом полимеризации нуклеотидов.

Метаболизм белков и нуклеиновых кислот включает их синтез из структурных компонентов аминокислот и нуклеотидов соответ–ственно и распад до указанных мономеров с последующей их деградацией до конечных продуктов катаболизма - СО 2 , Н 2 О, NН 3 , мочевой кислоты и прочих.

Эти процессы химически сложно организованы и практически не существует альтернативных обходных путей, которые могли бы нормально функционировать при возникновении нарушений метаболизма. Известны наследственные и приобретенные заболевания, молекулярной основой которых являются изменения обмена аминокислот и нуклеотидов. Некоторые из них имеют тяжелые клинические проявления, но, к сожалению, в настоящее время не существует эффективных методов их лечения. Речь идет о таких заболеваниях, как подагра, синдром Леша-Нихана, ензимопатии аминокислотного обмена. В связи с этим детальное изучение обмена аминокислот и нуклеотидов в норме и их возможных нарушений имеет большое значение для формирования арсенала теоретических знаний, необходимых в практической деятельности врача.

При написании конспекта лекций «Метаболизм аминокислот и нуклеотидов» авторы не ставили перед собой задачу подробно описать все химические процессы и превращения аминокислот и нуклеотидов, которые любознательный студент может найти в любом учебнике по биохимии. Основной задачей было изложить материал так, чтобы сложные биохимические реакции воспринимались легко, доступно, понятно, с выделением главного. Для «сильных» студентов материалы лекций могут стать отправным пунктом в последующем, более глубоком изучении биохимических превращений. Для тех, кому биохимия не стала любимым предметом, лекции помогут сформировать основу биохимических знаний, необходимых при изучении клинических дисциплин. Авторы выражают надежду, что предлагаемый конспект лекций станет для студентов добрым помощником на пути к их будущей профессии.

Тема. Метаболизм аминокислот: общие пути метаболизма. Синтез мочевины
План

1 Пути превращения аминокислот в тканях.

2 Трансаминирование аминокислот.

3 Дезаминирование аминокислот. Непрямое дезаминирование.

5 Обмен аммиака. Биосинтез мочевины. Некоторые клинические аспекты.
1 Пути превращения аминокислот в тканях

Аминокислоты - основной источник азота для организма млекопитающих. Они являются связующим звеном между процессами синтеза и распада азотсодержащих веществ, в первую очередь белков. За сутки в организме человека обновляется до 400 г белка. В целом период распада всех белков организма человека составляет 80 суток. Необратимо распадается четвертая часть белковых аминокислот (около 100 г). Эта часть возобновляется за счет пищевых аминокислот и эндогенного синтеза - синтеза заменимых аминокислот.

В клетках постоянно поддерживается определенный стационарный уровень аминокислот - фонд (пул) свободных аминокислот. Этот фонд обновляется за счет поступления аминокислот и используется для синтеза биологически важных химических компонентов клетки, т.е. можно выделить пути поступления и использования клеточного пула аминокислот .

Пути поступления свободных аминокислот, образующих аминокислотный фонд в клетке:

1 Транспорт аминокислот из внеклеточной жидкости - транспортируются аминокислоты, которые всасываются в кишечнике после гидролиза пищевых белков.

2 Синтез заменимых аминокислот - в клетке из промежуточных продуктов окисления глюкозы и цикла лимонной кислоты могут синтезироваться аминокислоты. К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, глицин, серин.


  1. Внутриклеточный гидролиз белков - это основной путь поступления аминокислот. Гидролитическое расщеп–ление тканевых белков катализируют лизосомальные протеазы. При голодании, онкологических и инфекцион–ных заболеваниях этот процесс усиливается.

Пути использования аминокислотного фонда:

1) Синтез белков и пептидов - это основной путь потребления аминокислот - 75-80% аминокислот клетки идет на их синтез.

2) Синтез небелковых азотсодержащих соединений:

Пуриновых и пиримидиновых нуклеотидов;

Порфиринов;

Креатина;

Меланина;

Некоторых витаминов и коферментов (НАД, КоА, фолиевая кислота);

Биогенных аминов (гистамин, серотонин);

Гормонов (адреналин, тироксин, трийодтиронин);

Медиаторов (норадреналин, ацетилхолин, ГАМК).

3) Синтез глюкозы с использованием углеродных скелетов гликогенных аминокислот (глюконеоге–нез).

4) Синтез липидов с использованием ацетильных остатков углеродных скелетов кетогенных аминокислот.

5) Окисление до конечных продуктов обмена (СО 2 , Н 2 О, NH 3) - это один из путей обеспечения клетки энергией - до 10% общих энергетических потребностей. Все аминокислоты, которые не используются в синтезе белков и других физиологически важных cоединений, подвергаются расщеплению.

Существую общие и специфические пути метаболизма аминокислот. К общим путям катаболизма аминокислот относятся:

1) трансаминирование;

2) дезаминирование;


  1. декарбоксилирование.

2 Трансаминирование аминокислот
Трансаминирование аминокислот - основной путь дезаминирования аминокислот, который происходит без образования свободного NH 3 . Это обратимый процесс переноса NH 2 –группы с аминокислоты на –кетокислоту. Процесс открыли А.Е. Браунштейн и М.Б. Крицман (1937).

В трансаминировании могут принимать участие все аминокислоты, кроме треонина, лизина, пролина и гидроксипролина.

Реакция трансаминирования в общем виде выглядит следующим образом:
СООН СООН СООН СООН

НС - NH 2 + C = O C = O + НС - NH 2

R 1 R 2 R 1 R 2

аминокислота -кетокислота
Ферменты, которые катализируют реакции этого типа, называются аминотрансферазами (трансаминаза–ми ). В организме человека функционируют аминотрансфе–разы L–аминокислот. Акцептором аминогруппы в реакции являются -кетокислоты – пируват, оксалоацетат, -кето–глутарат. Наиболее распространенные аминотрансферазы – АлАТ (аланинаминотрансфераза), АсАТ (аспартатамино–трансфераза), тирозинаминотрансфераза.

Реакция, которую катализирует фермент АлАТ, представлена ниже:
СООН СООН CООН СООН

│ │ АлАТ │ │

НСNH 2 + C = O C = O + HCNH 2

│ │ │ │

CH 3 CH 2 CH 3 CH 2

Ала ПВК

- кетоглутарат глу

Реакцию, которую катализирует фермент АсАТ, схематически можно изобразить следующим образом:
Асп + -кетоглутарат  Оксалоацетат + Глу.
Кофермент трансаминаз – пиридоксальфосфат (В 6) – входит в состав активного центра фермента. В процессе трансаминирования кофермент выполняет роль перенос–чика аминогруппы, и происходит взаимопревращение двух коферментных форм ПАЛФ(пиридоксаль–5–ф) и ПАМФ (пиридоксамин–5–ф):

NH 2 –группа

ПАЛФ  ПАМФ.

NH 2 –группа
Трансаминирование активно протекает в печени. Это позволяет регулировать концентрацию любых амино–кислот в крови, в том числе и поступивших с пищей (за исключением тре, лиз, про). Благодаря этому оптимальная смесь аминокислот переносится с кровью во все органы.

В ряде случаев может происходить нарушение трансаминирования аминокислот:

1) при гиповитаминозе В 6 ;

2) при лечении туберкулеза антагонистами трансами–аз – фтивазидом и его аналогами;

3) при голодании, циррозе и стеатозе печени наблюда–ется недостаток синтеза белковой части трансами–наз.

Для диагностики имеет значение определение активности аминотрансфераз в плазме крови. При патологических состояниях происходит усиление цитолиза в том или ином органе, что сопровождается повышением активности этих ферментов в крови.

Отдельные трансаминазы находятся в различных тканях в неодинаковом количестве. АсАТ больше в кардиомиоцитах, печени, скелетных мышцах, почках, поджелудочной железе. АлАТ – в рекордном количестве в печени, в меньшей степени - в поджелудочной железе, миокарде, скелетной мускулатуре. Следовательно, повышение активности АсАТ в крови более характерно для инфаркта миокарда (ИМ), а повышение активности АлАТ может свидетельствовать о цитолизе в гепатоцитах. Так, при остром инфекционном гепатите в крови активность АлАТ > АсАТ; но при циррозе печени - АсАТ > АлАТ. Незначительное повышение активности АлАТ имеет место также при ИМ. Поэтому определение активности сразу двух трансаминаз является важным диаг–ностическим тестом. В норме соотношение активностей АсАТ/АлАТ (коэффициент де Ритиса) составляет 1,330,42. При ИМ величина этого коэффициента резко возрастает, у больных инфекционным гепатитом, напротив, происходит снижение этого показателя.
3 Дезаминирование аминокислот. Непрямое дезамини–рование

С трансаминированием тесно связан процесс окислительного дезаминирования , в результате которого происходит отщепление NH 2 -группы с образованием NH 3 , Н 2 О и -кетокислоты. Дезаминирование аминокислот наиболее активно происходит в печени и почках.

Процесс катализируют ферменты оксидазы, кото–рые являются флавопротеинами. Существуют оксидазы L- и D-аминокислот. Оксидазы L–аминокислот ФМН–зависи–мые, D-аминокислот ФАД–зависимые.

Реакцию окислительного дезаминирования L-ами–нокислот схематически можно представить следующим образом:
ФМД ФМН·Н + Н 2 О NH 3

L –АК L –иминокислота -кетокислоты.

В организме человека активность оксидаз аминокислот крайне низкая.

Наиболее активно в клетках происходит окислительное дезаминирование L–глутаминовой кислоты:

НАД НАДН·Н + Н 2 О

L–глутамат L–иминоглутарат -КГ + NH 3 .

1 2
1 - Глутаматдегидрогеназа (может использовать как НАД + , так и НАДФ +);

2 - Эта стадия протекает неферментативно.

Схематически общее уравнение реакции (эта реакция обратима):
L-Глу + НАД + Н 2 О  -КГ + НАДН·Н + + NH 3

L –глутаматдегидрогеназа – фермент, катализирую-щий эту реакцию, который имеет высокую активностью и широко распространен в тканях млекопитающих.

Глутаматдегидрогеназа печени – регуляторный фермент, который локализован в митохондриях. Активность этого фермента зависит от энергетического статуса клетки. При дефиците энергии реакция происходит в направлении образования -кетоглутарата и НАДН. Н + , которые направляются в ЦЛК и окислительное фосфо–рилирование соответственно. В результате происходит усиление синтеза АТФ в клетке. Поэтому для глутамат–дегидрогеназы ингибиторы – АТФ, ГТФ, НАДН, а активатор – АДФ.

Большинство аминокислот дезаминируются путем не–прямого дезаминирования – это процесс сопряжения 2 ре–акций:

1 ) трансаминирование с образованием глутамата;

2 ) глутаматдегидрогеназная реакция.
аминокислота -КГ НАДН·Н +

NH 3 1 2 NH 3
-кетокислота Глутамат НАД
В этом случае биологический смысл трансаминирования (1 ) состоит в том, чтобы собрать аминогруппы всех распадающихся аминокислот в виде аминокислоты одного вида - глутамата. Далее глутаминовая кислота транспортируется в митохондрии, где подвергается окислительному дезаминированию под действием глутаматдегидрогеназы (2 ).

Наиболее активно непрямое дезаминирование происходит в печени. Здесь образующийся NH 3 поступает в цикл мочевинообразования для обезвреживания.

Направленность равновесных процессов трансами–нирования, непрямого дезаминирования во многом зависит от наличия и концентрации аминокислот и -кетокислот. При избытке аминного азота усиливается превращение аминокислот в соответствующие кетокислоты с последую-щей их энергетической и пластической утилизацией.
4 Декарбоксилирование аминокислот

Это процесс отщепления карбоксильной группы, которая находитсяв -положении аминокислоты, с образо-ванием аминов и СО 2 . В результате декарбоксилирования аминокислот образуются:


  1. биогенные амины (гистамин, дофамин, тирамин, –аминомасляная кислота - ГАМК и др).
Например:

СООН СН 2 NH 2

СНNH 2 СО 2 СН 2

СН 2 СООН

Глу ГАМК

Декарбоксилирование аминокислот с образованием биогенных аминов наиболее активно происходит в печени, мозге и хромаффинной ткани.

2) продукты «гниения белков в кишечнике», которые являются результатом декарбоксилирование ами–нокислот под действием микрофлоры кишечника. Из аминокислот образуются токсические продукты, например:

-СО 2
лизин кадаверин

-СО 2

орнитин путресцин
Всего в организме человека образуется более 40 различных аминов. Усиление синтеза аминов наблюдается при гипоксии и голодании. Местное увеличение синтеза, освобождение и инактивации катехоламинов, гистамина и серотонина свойственно очагам воспаления.

Злокачественные опухоли апудоцитарного проис–хождения, находящиеся в кишечнике, бронхах, поджелу–дочной железе, могут синтезировать большое количество серотонина (используя для этой цели до 60% суточной потребности триптофана).

Биогенные амины инактивируются под действием окислительных ФАД–зависимых ферментов - моноамино–оксидаз (МАО). Происходит окислительное дезаминиро–вание аминов до альдегидов.

R–CH 2 –NH 2 + ФАД + Н 2 О  R–CH + NH 3 + ФАДН 2
Продукты дезаминирования биогенных аминов – альдегиды – окисляются до органических кислот с помощью альдегиддегидрогеназ. Эти кислоты экскрети–руются с мочей или подвергаются дальнейшей окисли–тельной деградации. Кроме того, в деградации катехолами-нов принимает участие катехол–О–метилтрансфераза.
Некоторые клинические аспекты

В условиях блокады МАО (при терапии антидеп–рессантами) снижается способность разрушать амины. В этом случае организм может стать чувствительным к действию аминов. Например, прием в пищу сыра и употребление некоторых сортов красного вина, которые богаты тирамином , на фоне терапии ингибиторами МАО ведет к гипертензии.

Снижение активности МАО наблюдается при избытке тиреоидных гормонов.

Повышение активности МАО может происходить при авитаминозе В 1 , т.к. один из продуктов обмена В 1 является ингибитором МАО.
5 Обмен аммиака. Биосинтез мочевины. Некоторые клинические аспекты

Аммиак – это один из конечных продуктов обмена азотсодержащих веществ. Это составляющая фракции остаточного азота сыворотки крови (наряду с мочевиной, мочевой кислотой, креатинином, индиканом). В крови концентрация аммиака невелика - 25-40 мкмоль/л. При более высоких концентрациях он оказывает токсическое действие на организм.

Аммиак токсичен, в первую очередь для ЦНС. Токсичность аммиака связана с его способностью нарушать функционирование ЦЛК, т.к. NH 3 выводит из ЦЛК –кетоглутарат:
–КГ + NH 3 + НАДН. Н +  Глу + НАД + + Н 2 О.
В итоге восстановительного аминирования –кето–глутарата происходит снижение активности ЦЛК в клетках ЦНС, что, в свою очередь, угнетает активность аэробного окисления глюкозы. В результате нарушается энергопро–дукция и развивается гипоэнергетическое состояние, т.к. глюкоза – это основной источник энергии для головного мозга.
NH 3 образуется в ходе следующих процессов :

1) окислительного дезаминирования аминокислот – это основной путь продукции NH 3 ;


  1. дезаминирования биогенных аминов;

  2. дезаминирования пуриновых оснований (аденин, гуанин);

  3. катаболизм пиримидиновых нуклеотидов.
В головном мозге основной источник образования NH 3 – дезаминирование АМФ до инозинмонофосфата (ИМФ):

АМФ + Н 2 О  ИМФ + NH 3 .

Фермент, который катализирует эту реакцию, - аденозиндезаминаза.

Аммиак транспортируется кровью к печени и почкам для обезвреживания в составе аминокислот, среди которых основными являются глутамин, аспарагин, аланин.

Обезвреживание NH 3 происходит практически сразу после его образования, т.к. в тканях он сразу же включается в состав аминокислот, главным образом глутамина. Однако для дальнейшей детоксикации и выведения амиака существуют биохимические процессы в печени и почках, которые и являются основными путями обезвреживания NH 3 .

Выделяют следующие механизмы обезвреживания NH 3 :

1 ) восстановительное аминирование –кетоглутарата;

2 ) образование амидов аминокислот – аспарагина и глутамина;

3 ) образование аммонийных солей в почках;

4 ) синтез мочевины.

В тканях аммиак подлежит немедленной нейтрализа–ции. Это достигается путем сочетания процессов (1 ) и (2 ).


  1. Восстановительное аминирование –кетоглутарата :

NH 3 + –КГ + НАДН . Н + Глу + НАД + Н 2 О.

Фермент - глутаматдегидрогеназа
Для этого процесса необходимы значительные концентрации –КГ. Для того чтобы не было перерасхода –КГ и работа ЦЛК не была нарушена, –КГ пополняется за счет превращения ПВК  ОА  –КГ.

2 ) Образование амидов – это важный вспомогательный механизм обезвреживания NH 3 в тканях путем его связывания с Глу или Асп.

Асп + АТФ + NH 3 Асн + АМФ + ФФ нн

Фермент - аспарагинсинтаза

Глу + АТФ + NH 3 Глн + АМФ + ФФ нн

Фермент - глутаминсинтаза
Этот процесс наиболее активен в ЦНС, мышцах, почках, печени (для поддержания внутренней концентрации NH 3). Главным образом глн является транспортной формой нетоксичного NH 3 из мозга, мышц и др. тканей. Глутамин легко проникает через мембрану, т.к. при физиологических значениях рН он не имеет заряда. При физической нагрузке аланин активно транспортирует NH 3 от мышц к печени. Кроме того, большое количество аланина содержит кровь, оттекающую из кишечника. Этот аланин также направляется в печень для глюконеогенеза.

3 ) Глн и асн с током крови попадают в почки, где подвергаются гидролизу с помощью специальных ферментов – глутаминазы и аспарагиназы, которые есть и в печени:

Асн + Н 2 О  Асп + NH 3 .

Глн + Н 2 О  Глу + NH 3 .

Освободившийся в канальцах почек NH 3 нейтрализуется с образованием солей аммония, которые выводятся с мочей:

NH 3 + Н + + Сl -  NH 4 Cl.

4 ) Синтез мочевины - это основной путь обезвреживания аммиака. На долю мочевины приходится 80% экскретируемого азота.

Процесс образования мочевины происходит в печени и представляет собой циклический процесс, который называется «орнитиновый цикл» (цикл Кребса–Гензелайта).

В цикле принимают участие две аминокислоты, которые не входят в состав белков – орнитин и цитруллин, и две протеиногенные аминокислоты – аргинин, аспарагин.

Процесс включает пять реакций: первые две протекают в митохондриях, остальные - в цитозоле гепатоцитов. Некоторые ферменты мочевинообразования есть в мозге, эритроцитах, сердечной мышце, однако весь набор ензимов есть только в печени.

І реакция – это синтез карбамоилфосфата:

СО 2 + NH 3 + 2АТФ  NH 2 –CО–Ф + 2АДФ + Ф н.

Фермент - карбамоилфосфатсинтаза І (митохонд–риальный). Существует также карбамоилфосфатсинтаза ІІ (в цитозоле), которая участвует в синтезе пиримидиновых нуклеотидов.

Карбамоилфосфатсинтаза І - регуляторный фермент, для которого активатором является N –ацетилглутамат .

ІІ реакция – включение карбамоилфосфата в циклический процесс. В этой реакции происходит его конденсация с орнитином), в результате чего образуется цитруллин (реакция также происходит в митохондриях).

III реакция - образование аргининосукцината. Это вторая реакция, в которой используется энергия АТФ.

IV реакция - расщепление аргининосукцината с образованием аргинина и фумарата. Последний может поступать в ЦЛК, усиливая его работу. Т.о. это анаплеротическая (пополняющая) реакция для ЦЛК.

V реакция - регенерация орнитина с образованием мочевины.
Схема синтеза мочевины

СО 2 + NH 3 + 2АТФ  карбамоилфосфат + 2АДФ + Ф н

1
NH 2 –CО–NH 2

(мочевина) Орнитин

5 2

Аргинин Цитруллин

4 3 АТФ

Фумарат АМФ

Аргининосукцинат ФФ н

Ферменты:

1 - карбамоилфосфатсинтаза;

2 - орнитинкарбамоилтрансфераза;

3 - аргининосукцинатсинтаза;

4 - аргининосукцинатлиаза;

5 - аргиназа (сильными ингибиторами фермента являются орнитин и лизин, конкурирующие с аргинином, активаторы - Са 2+ и Мn 2+).

Орнитин, который восстанавливается в ходе цикла, может запускать новый цикл мочевинообразования. По своей роли орнитин аналогичен оксалоацетату в ЦЛК. Для прохождения одного цикла необходимо 3 АТФ, которые используются в 1–й и 3–й реакциях.

Орнитиновый цикл тесно взаимосвязан с ЦЛК.

Схематически взаимосвязь можно представить так:
2 АТФ

Орнити- СО 2

новый ЦЛК

цикл

Фумарат АТФ

Аспартат

Это «двухколесный велосипед» Кребса – ни одно колесо не способно «вращаться» без исправного функционирования второго.

Экскреция синтезированной мочевины обеспечивается почками. За сутки выделяется 20-35 г мочевины. При изменении количества белка в пище с целью поддержания азотистого равновесия скорость синтеза мочевины в организме изменяется:

белка с пищей  синтез ферментов цикла  синтез мочевины,

если  катаболизм белков синтез мочевины количество

выводимого азота.

Усиление катаболизма белков и, следовательно, повыше–ние экскреции мочевины наблюдаются при голодании и сахарном диабете.

При заболеваниях печени, которые сопровождаются нарушением синтеза мочевины, увеличивается концентра–ция аммиака в крови (гипераммониемия) и, как следствие, развивается печеночная кома.


Генетические дефекты ферментов синтеза мочевины

Известны врожденные метаболические нарушения, обусловленные недостатком каждого из пяти ферментов цикла.

При нарушении синтеза мочевины наблюдается повышение концентрации аммиака в крови - гипераммониемия, которая наиболее выражена при дефекте 1–го и 2–го ферментов.

Клинические симптомы - общие для всех нарушений орнитинового цикла: рвота (у детей), отвращение к богатым белками продуктам, нарушение координации движений, раздражительность, сонливость, умственная отсталость. В некоторых случаях может наступить смерть в течение первых месяцев жизни.

Диагностирование нарушений проводят:

1) путем определения концентрации аммиака и промежуточных продуктов орнитинового цикла в крови и моче;

2) путем определения активности ферментов в биоптатах печени.

К наследственным энзимопатиям орнитинового цикла относятся:


  • гипераммониемия І типа недостаток карбамоил–фосфат–синтазы І (немногочисленные случаи, тяжелая гипераммониемия);

  • гипераммониемия ІІ типа недостаток орнитин–карбамоилтрансферазы (многочисленные случаи). В крови, спинномозговой жидкости и моче повышается концентрация аммиака и глутамина, Увеличение концентрации аммиака приводит к повышению активности глутаминсинтазы;

  • цитруллинемия – дефект аргининосукцинатсинтазы (редкое заболевание). С мочой экскретируется большое количество цитруллина, повышается концентрация цитруллина в плазме и спинномозковой жидкости;

  • аргининосукцинатная ацидурия дефект аргинино–сукцинатлиазы (редкое заболевание). Повышается концентрация аргининосукцината в крови, спинномозговой жидкости и моче. Болезнь, как правило, развивается рано и приводит к фатальному исходу в раннем возрасте. Для диагностики этого заболевания используют определение наличия аргининосукцината в моче (хроматография на бумаге) и эритроцитах (дополнительно). Раннюю диагностику проводят путем амниоцентеза;

  • аргининемия - дефект аргиназы. Наблюдается повышение концентрации аргинина в крови и спинномозговой жидкости (в эритроцитах низкая активность аргиназы). Если больного перевести на малобелковую диету, то концентрация аммиака в крови снижается.

Лекция 2

Тема. Специализированные пути метаболизма

аминокислот и циклических аминокислот.

Наследственные энзимопатии

аминокислотного обмена
План

1 Пути метаболизма безазотистого скелета аминокис–лот. Гликогенные и кетогенные аминокислоты.

2 Метаболизм глицина и серина.

3 Метаболизм серусодержащих аминокислот. Синтез креатина.

4 Метаболизм аминокислот с разветвленной цепью.

5 Метаболизм циклических аминокислот (фенилала–нина, тирозина, триптофана и гистидина).

6 Наследственные нарушения обмена аминокислот .
1 Пути метаболизма безазотистого скелета аминокис–лот. Гликогенные и кетогенные аминокислоты

Безазотистые скелеты аминокислот (–кетокисло–ты) образуются в результате реакций трансаминирования и дезаминирования.

Углеродные скелеты протеиногенных аминокислот после отщепления NH 2 –группы превращаются в конечном итоге в 5 продуктов, которые вовлекаются в ЦЛК: ацетил–КоА, фумарат, сукцинил–КоА, –кетоглутарат, оксало–ацетат.

В ЦЛК происходит полное окисление углеродных скелетов аминокислот с высвобождением значительного количества энергии, которое соизмеримо количеством энергии, высвобождающимся при аэробном окислении 1 молекулы глюкозы.

Схематически пути вхождения -кетокислот в ЦЛК показаны ниже:

Ала, Цис, Тре

Гли, Сер,

ПВК

Ацетил–КоА

Ацетоацетил-КоА

Асн, Асп

ОА

Тир, Фен, Трп
ЦЛК

Фумарат

–КГ

Глн, Глу, Арг, Гис, Про

Сукцинил-КоА

Иле, Вал, Мет

Гликогенные и кетогенные аминокислоты

Гликогенные аминокислоты – это аминокислоты, которые могут быть субстратами для синтеза глюкозы, т.к. мо–гут превращаться в пируват, оксалоацетат, фосфоенол–пируват - это соединения–предшественники глюкозы при глюконеогенезе. К таким аминокислотам относятся все протеиногенные аминокислоты за исключениемЛей, Лиз.

Кетогенные аминокислоты – это субстрат для кетогенеза и синтеза липидов. К ним относятся Лей, Лиз, Иле, Тир, Трп, Фен. Лей и Лиз - это истинно кетогенные аминокислоты, т.к. Иле, Трп, Фен могут быть одновременно и гликогенными.
2 Метаболизм глицина и серина
Глицин превращается в серин с участием коферментной формы фолиевой кислоты (Вс) - тетрагидрофолиевая кислота, или ТГФК (Н 4 –фолат).
3 Метаболизм серусодержащих аминокислот. Синтез креатина

Метионин – это незаменимая аминокислота, которая является основным донором метильных групп в реакциях метилирования.

Активная форма – S-аденозилметионин (SAM), реакция образования которого показана ниже:
Мет + АТФ  S-Аденозилметионин + ФФн + Фн.

Фермент - метионинаденозилтрансфераза.

SAM участвует в реакциях метилирования при синтезе: холина, креатина, адреналина, меланина, нуклеотидов, растительных алкалоидов. После переноса СН 3 -группы SAM превращается в S-аденозилгомоцистеин, который в результате последовательности реакций восстанавливается до метионина:
S-аденозилметионин S-аденозилгомоцистеин

аденозин

метионин пищи
метионин гомоцистеин.

сукцинил–КоА

Этот циклический процесс не может функционировать без постоянного поступления Мет, т.к. Мет расходуется в реакциях катаболизма.

Мет как донор метильных груп принимает участие в синтезе креатина.
Синтез креатина

Креатин – основной субстрат для образования креатинфосфата в мышцах и нервной ткани. Синтез креатина происходит последовательно в почках и печени (некоторая часть его может синтезироваться в поджелудочной железе).

Выделяют две стадии синтеза:

1 Происходит в почках:

Арг + Глн Орнитин + Гликоциамин.

(Гуанидинацетат )

Фермент - глицинамидинотрансфераза (трансами–наза).
2 Происходит в печени после транспорта из почек гликоциамина:
S–Аденозилметионин S–Аденозилгомоцистеин

Гликоциамин Креатин

Фермент - гуанидинацетатметилтрансфераза.
Далее креатин фосфорилируется с образованием макроэргического фосфата - креатинфосфата, который является формой депонирования энергии в мышцах и нервной системе. Фермент, катализирующий эту реак–цию, - креатинфосфокиназа (КФК):

Креатин + АТФ Креатин–ф + АДФ

неферментативно

креатинин с мочой.
Цис - этозаменимая аминокислота, основная роль которой состоит в следующем:

1) принимает участие в стабилизации структуры белков и пептидов - образует дисульфидные связи;


  1. является структурным компонентом трипептида глутатиона (глу-цис-гли), который в качестве кофермента и принимает участие в функционировании антиоксидантной системы организма, транспорте некоторых аминокислот через мембраны, восстановле–нии аскорбиновой кислоты из дегидроаскорбиновой и т.д.
Глутатион – это кофермент такой оксидоредуктазы, как глутатионпероксидаза. Этот селенсодержащий фермент катализирует реакцию детоксикации органических пероксидов. Это важный механизм предотвращения перекисного окисления липидов, которое может быть стимулировано под действием радиации или ксенобиотиков. Т.о. глутатион является внутриклеточным антиоксидантом;

3) при катаболизме цис образуется пируват, который используется как субстрат для глюконеогенеза, т.е. цис - гликогенная аминокислота;


  1. принимает участие в синтезе таурина - физиоло–гически важного соединения, которое необходимо для образования парных желчных кислот, может выполнять функцию медиатора в ЦНС и важен в функционировании миокарда.
Таурин образуется в реакции:

-СО 2

Цис  Цистеиновая кислота Таурин

СН 2 – СН – СООН СН 2 – СН 2

HO 3 S NH 2 SH NH 2
Таурин способствует снижению уровня холестерина при атеросклерозе, т.к. участвует в синтезе желчных кислот.

Аминокислоты с разветвленной цепью (АКРЦ) -валин, лейцин, изолейцин - при катаболизме превращаются в –кетокислоты (оксикислоты с разветвленной цепью - ОКРЦ). - NH 3

АКРЦ ОКРЦ

Этапы окисления АКРЦ:

1) трансаминирование:

АКРЦ + –КГ  ОКРЦ + Глу.

Фермент - АКРЦ–аминотрансфераза .

Наибольшая активность этого фермента наблюдается в сердце, почках, меньше – в скелетных мышцах, самая низкая – в печени;

2) дегидратация ОКРЦ до промежуточных продуктов ЦЛК . Фермент - дегидрогеназа ОКРЦ – локализован во внутренней мембране митохондрий и катализирует реакцию окислительного декарбоксилирования, в результате которой образуются промежуточные продукты ЦЛК:

Лей  ацетил–КоА и ацетоацетат.

Вал, Иле  сукцинил–КоА.
Катаболизм Вал и Иле (как и Мет) до сукцинил–КоА сопровождается образованием пропионил–КоА и метилмалонил–КоА:

Рис. 46.1. Окисление аминокислот для получения энергии в виде АТФ

Катаболизм аминокислот для получения энергии в виде АТФ

Распространенная ошибка - представление о том, что углеродные «скелеты» окисляются в цикле Кребса. Следует помнить, что в цикле Кребса окисляется ацетил-КоА - до 2 молекул СО 2 . Таким образом, чтобы полностью окислить аминокислоту, прежде ее надо преобразовать в ацетил-КоА. Так и происходит с большей частью аминокислот: из них образуется ацетил-КоА, который затем поступает в цикл Кребса. В процессе его окисления образуются НАДН и ФАДН 2 , необходимые для синтеза в дыхательной цепи. Примечание : некоторые аминокислоты - , глутамат, пролин и - вступают в цикл Кребса в виде . а-Кетоглутарат частично окисляется в цикле Кребса ферментом а-кетоглутаратдегидрогеназой с высвобождением одной молекулы СО 2 . Неиспользованная часть углеродного «скелета» теперь должна покинуть митохондрию, чтобы после ряда превращений вновь оказаться в ней в виде ацетил-КоА. И только потом он будет полностью окислен в цикле Кребса.

Нарушение обмена аминокислот

Рис. 47.1. Болезнь кленового сиропа, гомоцистинурия и цистинурия

Болезнь кленового сиропа

Болезнь кленового сиропа наследуется по аутосомно-рецессивному типу. Причина болезни - недостаточность дегидрогеназы а-кетокислот с разветвленной цепью (рис. 47.1). Эти а-кетокислоты образуются из - изолейцина, валина и . При недостаточности фермента они накапливаются и выводятся с мочой, придавая ей характерный запах кленового сиропа. И аминокислоты с разветвленной цепью, и а-кетокислоты с разветвленной цепью относятся к нейротоксичным веществам. Если они накапливаются в крови, развиваются тяжелые неврологические нарушения, возможны отек головного мозга, умственная отсталость. Для лечения болезни необходимо употреблять в пищу продукты с низким содержанием этих аминокислот.

Гомоцистинурия

Не так давно повышенную концентрацию гомоцистеина в крови включили в факторы риска развития . Впрочем, уже довольно давно было замечено, что без лечения при гомоцистинурии часто развиваются поражения сосудов. Кроме того, у таких больных нарушается структура хрящевой ткани, что приводит к , смещению хрусталика глаза и долихостеномелии (от греческого dolicho - длинный, stems - узкий, melos - конечность; эта аномалия также называется «паучья кисть»). Классическая форма гомоцистинурии развивается при нарушении работы цистатионин-β-синтазы. При недостаточности другого фермента - метионинсинтазы (метилтетрагидрофо-латгомоцистеинметилтрансферазы) - наблюдается гипергомоцистинурия.

Обратите внимание на орфографию: при гомоцистинурии повышен сывороточный гомоцистеин.

Рис. 47.2. Альбинизм и алкаптонурия

Недостаточность метионинсинтазы

Метионинсинтаза - В12-зависимый фермент; который в качестве кофермента использует N5-метилтетрагидрофолат (рис. 47.1). Этот фермент катализирует перенос метальной группы с N5-метилтетрагидрофолата на гомоцистеин с образованием . При недостаточности метионинсинтазы накапливается гомоцистеин, что приводит к гипергомоцистинемии, мегалобластной анемии и задержке умственного развития. В ряде случаев состояние больных улучшается при приеме и . Кроме того, можно принимать : в этом случае используется обходной метаболический путь, в котором бетаин отдает метальную группу гомоцистеину для образования метионина.

Недостаточность цистатионин-β-синтазы наследуется по аутосомно-рецессивному типу (рис. 47.1). Это самая распространенная причина гомоцистанурии. Среди всех нарушений аминокислотного обмена недостаточность цистатаонин-β-синтазы находится на втором месте по излечимости. Так, в ряде случаев состояние больных улучшается при приеме пиридоксина, однако многим больным он не помогает. Пероральное употребление бетаина нередко способствует эффективному снижению уровня гомоцистеина в сыворотке крови.

Цистинурия

Цистинурия наследуется по аутосомно-рецессивному типу. При цистинурии нарушено обратное всасывание некоторых аминокислот в почечных канальцах: цистина, орнитина, и . Цистин (димер ) плохо растворим в воде и накапливается в канальцевой жидкости, образуя камни в почках и мочевом пузыре (развивается так называемый цистиновый уролитиаз). Свое название цистин получил после того, как в мочевом пузыре (cyst) были обнаружены цистиновые камни.

Алкаптонурия

Алкаптонурия наследуется по аутосомно-рецессивному типу. Это легкое заболевание, которое никак не влияет на продолжительность жизни. Причина развития алкаптонурии - недостаточность оксидазы гомогентизиновой кислоты (рис. 47.2). Накапливающаяся гомогентизиновая кислота выводится вместе с мочой и постепенно окисляется на воздухе в пигмент черного цвета. Обычно болезнь выявляется, когда родители замечают черные пятна на пеленках и подгузниках.

Кроме того, следы пигмента постепенно накапливаются и в тканях, особенно в хрящевой. В четвертой декаде жизни они придают ушному хрящу голубовато-черную или серую окраску.

Альбинизм (глазокожный альбинизм)

Альбинизм - нарушение синтеза или обмена кожного пигмента меланина (рис. 47.2). Глазокожный альбинизм I типа развивается из-за нарушения структуры тирозиназы и наследуется по аутосомно-рецессивному типу. При этом заболевании в волосах, глазах и коже полностью отсутствует пигмент. Из-за отсутствия меланина в коже у таких больных повышен риск развития рака кожи.

Метаболизм фенилаланина и тирозина в норме и при патологии

Рис. 48.1. Метаболизм фенилаланина и тирозина в норме и патологии

Метаболизм фенилаланина и тирозина в норме

При окислении 4-го атома углерода ароматического кольца фенилаланина образуется . Катализирует эту реакцию фенилалаиингидроксилаза (ее другое название - фенилаланин-4-монооксигеназа), а кофактор этого фермента является тетрагидробиоптерин (ВН4). Тирозин - предшественник : , и , а также (трийодтиронина и ). Название «адреналин» имеет латинское происхождение и отражает место синтеза этого гормона - «над почкой». Американцы в погоне за независимостью называют этот же гормон «эпинефрин» (что значит «над почкой» по-гречески). Итак, название гормона связано с органом, где происходит его секреция - с мозговым веществом . Англичане называют надпочечник adrenal gland, американцы - epinephral gland.

Нарушение метаболизма фенилаланина. Фенилкетонурия

Фенилкетонурия - наследственная болезнь, при которой нарушен метаболизм фенилаланина, и фенилаланин вместе с кетоном фенилпируватом накапливается в организме. Без лечения фенилкетонурия приводит к умственной отсталости. Скрининг новорожденных (с помощью недавно введенного метода тандем-масс-спектрометрии) позволяет диагностировать фенилкетонурию сразу же после рождения и начать лечение, при котором риск умственной отсталости снижается до минимального. Классическая фенилкетонурия наследуется по аутосомно-рецессивному типу. При этом заболевании снижена активность фенилаланингидроксилазы, и лечение заключается в переводе на диету с низким содержанием фенилаланина. У некоторых больных уровень фенилаланина в крови снижается при проведении перорального нагрузочного теста с тетрагидробиоптерином (ВН4), особенно если используется чистый 611-ВН4-диастереоизомер.

Нарушение метаболизма тирозина: алкаптонурия и альбинизм

Метаболизм дофамина, норадреналина и адреналина

Биосинтез

Тирозин - предшественник катехоламинов: дофамина, норадреналина и адреналина. Адреналин запасается в хромаффинных клетках мозгового вещества надпочечников; он секретируется в экстренных, стрессовых ситуациях. Норадреналин (префикс «нор» означает отсутствие метальной группы) является нейромедиатором: он секретируется в синаптической щели в области нервного окончания. Дофамин - промежуточное вещество в биосинтезе норадреналина и адреналина. Он содержится в дофаминергических нейронах черной субстанции (substantia nigra) головного мозга.

Катаболизм

Главную роль ферменты в катехоламинов играют ферменты катехол-О-метилтрансфераза (КОМТ) и моноаминоксидаза (МАО) . КОМТ переносит метальную группу с S-аденозиметилметионина на кислород у третьего атома углерода ароматического кольца катехоламина (рис. 48.1). После этого возможны два равновероятных варианта развития событий. В первом случае катехоламины сначала метилируются катехол-О-метилтрансферазой и образуются «метилированные амины» - норметадреналин и метадреналин, которые далее подвергаются окислительному дезаминированию МАО, и продукт МАО-реакции окисляется до З-метокси-4-гидроксиминдальной кислоты (ее другое название - ванил ил миндальная кислота). Если же события развиваются по второму пути, катехоламины сначала вступают в реакцию с МАО, в которой происходит их окислительное дезаминирование. Далее следует реакция окисления, продукты этой реакции метилирует КОМТ и образуется 3-метокси-4-гидроксиминдальная кислота.

Метаболизм катехоламинов при патологиях

Недостаток дофамина при болезни Паркинсона

При «дрожательном параличе» (так впервые в 1817 г. была названа ) происходит разрушение дофаминсодержащих нейронов черной субстанции (substantia nigra) головного мозга. Существенные достижения в лечении этой болезни были достигнуты, когда больным стали назначать L-ДОФА (леводопа) - предшественник дофамина. В отличие от дофамина, леводопа может проходить через гематоэнцефалический барьер. Эффективным оказался дополнительный прием карбидопы и бенсеразида. Эти вещества не проходят через гематоэнцефалический барьер; они подавляют активность периферической декарбоксилазы и не позволяют ей расщеплять L-ДОФА. Благодаря этому больные могут принимать гораздо меньшие дозы L-ДОФА.

Избыточное образование адреналина при феохромоцитоме

Феохромоцитома - редко встречающаяся опухоль мозгового вещества надпочечников, которая синтезирует избыток адреналина и/или норадреналина. До 1990 г. феохромоцитома часто оставалась нераспознанной, и в большинстве случаев опухоль диагностировалась уже при вскрытии. В настоящее время диагноз можно установить с помощью магнитно-резонансной томографии брюшной полости, после чего опухоль удаляют хирургическим путем. При феохромоцитоме больные страдают от приступов сильной гипертензии, повышенного потоотделения и головной боли. Из-за приступообразного характера симптомов кровь и мочу для анализа необходимо собирать сразу после приступа; результаты анализов, собранных в промежутки между кризами, часто оказываются нормальными. При диагностике заболевания измеряют уровень метадреналина, норметадреналина и вани-лилминдальной кислоты в моче. Иногда показателен и уровень адреналина и норадреналина в крови.

Избыточное образование дофамина

Нейробластома - опухоль, синтезирующая избыток дофамина. Она может развиться в любом месте организма. Нейробластомы образуются из клеток нервного гребня и обычно появляются у детей до 5 лет. Диагностическое значение имеет повышение уровня ванилилминдальной кислоты и продукта катаболизма дофамина - гомованилиновой кислоты в моче.

Кинурениновый путь - основной путь метаболизма триптофана. В нем образуются предшественники НАД+ и НАДФ+ (они также синтезируются из поступающего с пищей ). В среднем из 60 мг триптофана образуется 1 мг ниацина.

Серотонин

(5-гидрокситриптамин) образуется из триптофана в индоламиновом метаболическом пути. Серотонин отвечает за хорошее настроение. При снижении уровня серотонина в мозге развивается депрессия. Селективные ингибиторы обратного захвата серотонина - класс хорошо зарекомендовавших себя лекарств-антидепрессантов. Они продлевают присутствие серотонина в синаптической щели и, таким образом, стимулируют передачу сигналов между нейронами. При этом возникает ощущение эйфории.

Моноаминовая теория патогенеза депрессии

Моноаминовая теория патогенеза была предложена более 35 лет назад для описания биохимических нарушений при депрессии. Согласно этой теории, депрессия развивается при недостатке моноаминов (например, норадреналина и серотонина) в синапсах, что приводит к снижению синаптической активности в головном мозге. Напротив, избыточное количество моноаминов в синапсах и повышенная синаптическая активность в головном мозге приводят к чрезмерной эйфории, развивается маниакальный синдром.

Известно, что системное введение снижает уровень серотонина. стимулируют активность диоксигеназы, и триптофан поступает преимущественно в кинурениновый метаболический путь, минуя индоламиновый путь (и соответственно синтез серотонина). Низкое содержание серотонина в головном мозге может быть причиной депрессии. Больные с высоким уровнем кортизола (например, при синдроме Кушинга) подвержены депрессиям, что находится в соответствии с моноаминовой теорией.

Карциноидный синдром и 5-гидроксииндолуксусная кислота

Превращается в 5-гидроксииндолуксусную кислоту, которая выводится с мочой. При карционидном синдроме уровень 5-гидроксииндолуксусной кислоты в моче повышен.

Мелатонин

Образуется из серотонина в клетках эпифиза и секретируется в период темного времени суток. Обычно секреция мелатонина начинается ночью и способствует засыпанию. В период светлого времени суток концентрация мелатонина в крови очень низка.

Биологическая химия Лелевич Владимир Валерьянович

Глава 25. Метаболизм отдельных аминокислот

Метаболизм метионина

Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют трансметилированием, имеющим важное метаболическое значение. Метильная группа в молекуле метионина прочно связана с атомом серы, поэтому непосредственным донором одноуглеродного фрагмента служит активная форма аминокислоты.

Рисунок 25.1. Обмен метионина.

Реакция активации метионина

Активной формой метионина является S-аденозилметионин (SAM), образующийся в результате присоединения метионина к молекуле аденозина. Аденозин образуется при гидролизе АТФ. Эту реакцию катализирует фермент метионинаденозинтрансфераза, присутствующий во всех типах клеток. Она уникальна для биологических систем, так как является единственной реакцией, в результате которой освобождаются все три фосфатных остатка АТФ. Отщепление метильной группы от SAM и перенос ее на соединение-акцептор катализируют ферменты метилтрансферазы. SAM в ходе реакции превращается в S-аденозилгомоцистеин (SAГ).

Реакции метилирования играют важную роль в организме и протекают очень интесивно. Они используются для синтеза:

1. фосфатидилхолина из фосфатидилэтаноламина;

2. карнитина;

3. креатина;

4. адреналина из норадреналина;

5. метилировании азотистых оснований в нуклеотидах;

6. инактивации метаболитов (гормонов, медиаторов) и обезвреживании чужеродных соединений.

Все эти реакции вызывают большой расход метионина, так как он является незаменимой аминокислотой. В связи с этим играет большое значение возможность регенерации метионина. В результате отщепления метильной группы SAM превращается в SAГ, который при действии гидролазы расщепляется на аденозин и гомоцистеин. Гомоцистеин может снова превращаться в метионин под действием гомоцистеинметилтрансферазы. Донором метильной группы в этом случае служит 5-метилтетрагидрофолиевая кислота (5-метил-ТГФК), которая превращается в ТГФК. Промежуточным переносчиком метильной группы в этой реакции служит производное витамина B 12 -метилкобаламин, выполняющий роль кофермента. Поставщиком одноуглеродных фрагментов для регенерации 5-метил-ТГФК служит серин, который превращается в глицин.

Синтез креатина

Креатин необходим для образования в мышцах макроэргического соединения креатинфосфата. Синтез креатина идет в 2 стадии с использованием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования с образованием креатина. Креатин с током крови переносится в мышцы и клетки мозга, где из него под действием креатинкиназы (реакция легко обратима) образуется креатинфосфат – своеобразное депо энергии.

Метаболизм фенилаланина и тирозина

Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической монооксигеназы – фенилаланингидроксилазы. Данная реакция необратима и играет важную роль в удалении избытка фенилаланина, так как высокие концентрации его токсичны для клеток.

Обмен тирозина значительно сложнее. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений как катехоламины, тироксин, меланин и др.

В печени происходит катаболизм тирозина до конечных продуктов фумарата и ацетоацетата. Фумарат может окислятся до СО 2 и Н 2 О или использоваться для глюконеогенеза.

Превращение тирозина в меланоцитах. Он является предшественником меланинов. Синтез меланинов – сложный многоступенчатый процесс, первую реакцию – превращение тирозина в ДОФА – катализирует тирозиназа, использующая в качестве кофактора ионы меди.

В щитовидной железе из тирозина синтезируются гормоны тироксин и трийодтиронин.

В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов. Промежуточным продуктом их синтеза является ДОФА. Однако в отличие от меланоцитов, гидроксилирование тирозина осуществляется под действием тирозингидроксилазы, которая является Fe 2+ -зависимым ферментом, и его активность регулирует скорость синтеза катехоламинов.

Из книги Краткая история биологии [От алхимии до генетики] автора Азимов Айзек

Глава 12 Метаболизм ХимиотерапияБорьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Концентрация врачей в отдельных регионах Если проанализировать карту, характеризующую плотность врачей частной практики, то можно составить следующее представление о 134 существующих департаментах:на юге Франции на одного врача приходится 360 жителей;на севере

Из книги КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. автора Филатов Феликс Петрович

Практика отдельных лабораторий В качестве примера следует привести коммерческие методы, используемые лабораториями Siba Geigy, с помощью которых производят не только лекарства, но и продукцию, предназначенную для сельского хозяйства, в частности пестициды. Эти лаборатории

Из книги Фенетика [Эволюция, популяция, признак] автора Яблоков Алексей Владимирович

Мафиозная практика отдельных лабораторий В соответствии с расследованием, проведенным Мишелем Редиа, многонациональное общество Merek, центральное бюро которого находится в штате Нью-Джерси в США, начало заниматься мошеннической деятельностью. Мошенничество

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько

Из книги Клеймо создателя автора Филатов Феликс Петрович

Принцип отдельных признаков У Г. Менделя был один удивительный предшественник, почти вскрывший основные закономерности наследования признаков за 35 лет до работ Менделя. Это О. Сажре - французский растениевод (1763–1851), автор замечательных работ по гибридизации тыквенных,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

От отдельных признаков до фена Английский биолог В. Бэтсон был одним из тех, кто формулировал целые научные направления, прозорливо отличал «существенное от несущественного». Он предложил термин «генетика» в 1906 г. и был организатором первых конференций, по гибридизации,

Из книги автора

3. Перемещения отдельных клеток Многие процессы формообразования происходят не путем перемещения клеточных пластов, а путем перемещения отдельных клеток. Иногда движение клеточного пласта происходит при частичной потере его эпителиальной структуры. Так, например,

Из книги автора

Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько

Из книги автора

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

Из книги автора

Метаболизм фруктозы Значительное количество фруктозы, образующее при расщеплении сахарозы, прежде чем поступить в систему воротной вены, превращается в глюкозу уже в клетках кишечника. Другая часть фруктозы всасывается с помощью белка-переносчика, т.е. путем

Из книги автора

Метаболизм галактозы Галактоза образуется в кишечнике в результате гидролиза лактозы.Нарушение метаболизма галактозы проявляется при наследственном заболевании – галактоземии. Оно является следствием врожденного дефекта фермента

Из книги автора

Метаболизм лактозы Лактоза, дисахарид содержится только в молоке и состоит из галактозы и глюкозы. Лактоза синтезируется только секреторными клетками желез млекопитающих в период лактации. Она присутствует в молоке в количестве от 2 % до 6 % в зависимости от вида

Из книги автора

Глава 22. Метаболизм холестерола. Биохимия атеросклероза Холестерол – стероид, характерный только для животных организмов. Основное место его образования в организме человека – печень, где синтезируется 50% холестерола, в тонком кишечнике его образуется 15–20%, остальное

Из книги автора

Глава 23. Обмен аминокислот. Динамическое состояние белков организма Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Из книги автора

Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют трансметилированием,

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

Факультет Биомедицинская техника

Кафедра Медико-технические информационные технологии

Метаболизм аминокислот и его роль в жизнедеятельности организма

(по биохимии)

Евдокимова М.П. Группа: БМТ2-32

Руководитель: Ершов Ю.А.

Москва 2012

Понятие аминокислоты

Метаболизм аминокислот

Основные пути обмена аминокислот

Дезаминирование

Трансдезаминирование

Декарбоксилирование

Нарушение обмена аминокислот

Заключение

органическое соединение метаболизм аминокислота тирозин

Цель: Описать пути обмена аминокислот и определить значимость метаболического процесса.

Понятие Аминокислоты

Аминокислоты -- важнейшие, а некоторые из них жизненно важные органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

В живых организмах аминокислоты выполняют множество функций. Они являются структурными элементами пептидов и белков, а так же других природных соединений. Для построения всех белков, будь то белки из самых древних линий бактерий или из высших организмов, используется один и тот же набор из 20 различных аминокислот, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности. Поистине замечательное свойство клеток - это их способность соединять 20 аминокислот в различных комбинациях и последовательностях, в результате чего образуются пептиды и белки, обладающие совершенно разными свойствами и биологической активностью. Из одних и тех же строительных блоков разные организмы способны вырабатывать такие разнообразные продукты, как ферменты, гормоны, белок хрусталика глаза, перья, паутина, белки молока, антибиотики, ядовитые вещества грибов и многие другие соединения, наделенные специфической активностью. Также некоторые из aминoкиcлoт являются нейромедиаторами или предшественниками нейромедиаторов, медиаторов или гормонов.

Метаболизм аминокислот

Важнейшую и незаменимую роль в жизни организмов играет обмен аминокислот. Непротеиногенные aминoкиcлoты oбpaзyютcя в качестве прoмeжyточныx продуктов при биоcинтeзе и деградации протеиногенных аминокислот или в цикле мочевины. Кроме того, для животных и человека аминокислоты - строительные блоки белковых молекул - являются главными источниками органического азота, который используется, в первую очередь, для синтеза специфических организму белков и пептидов, а из них - азотсодержащих веществ небелковой природы (пуриновые и пиримидиновые основания, порфирины, гормоны и др.).

При необходимости аминокислоты могут служить источником энергии для организма, главным образом, за счет окисления их углеродного скелета.

Основные направления метаболизма аминокислот.

Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т.е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т.е. анаболическая функция преобладает над катаболической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Причем, разные белки обновляются с различной скоростью - от нескольких минут до 10 и более суток, а такой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 суток. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г), которая должна возобновляться за счет белков пищи, остальные аминокислоты частично синтезируются организм. При недостаточном поступлении белков с пищей организм использует белки одних тканей (печени, мышц, плазмы и др.) для направленного синтеза белков других жизненно важных органов и тканей: сердечной мышцы и т.д. Биосинтез белков осуществляется лишь при наличии в качестве исходных мономеров всех 20 природных аминокислот, причем каждой в нужном количестве. Длительное отсутствие и недостаточное поступление даже одной из 20 аминокислот приводит к необратимым изменениям в организме.

Белки и аминокислоты - это самые главные азотсодержащие соединения животных организмов - на их долю приходится более 95% биогенного азота. С обменом белков и аминокислот неразрывно связано понятие азотистого баланса (АБ), под которым понимают разницу между количеством азота, введенного в организм с пищей (Nввед) и количеством азота, выведенного из организма (Nвывед) в виде конечных продуктов азотистого обмена, преимущественно мочевины:

АБ = N введ - N вывед, [г·сутки -1 ]

При положительном азотистом балансе биосинтез белков преобладает над процессами их распада, т.е. из организма выводится меньше азота, чем поступает. Положительный азотистый баланс наблюдается в период роста организма, а также при выздоровлении после истощающих заболеваний. При отрицательном азотистом балансе распад белков преобладает над их синтезом, и азота из организма выводится больше, нежели поступает. Такое состояние возможно при старении организма, голодании и различных истощающих заболеваниях. В норме у практически здорового взрослого человека наблюдается азотистое равновесие, т.е. количество азота, введенного в организм, равно количеству выделенного. Нормы белка в питании при достижении азотистого равновесия составляют в среднем 100-120 г·сутки -1 .

Всасывание свободных аминокислот, образовавшихся в результате гидролиза белков, происходит, в основном, в тонком разделе кишечника. Данный процесс представляет собой активный транспорт молекул аминокислот, требующий энергии и зависящий от концентрации ионов Na+. Обнаружено более пяти специфических транспортных систем, каждая из которых переносит наиболее близкие по химическому строению аминокислоты. Разные аминокислоты могут конкурировать друг с другом за участки связывания на встроенных в мембрану транспортных белках (см. главу 15 настоящего Раздела). Таким образом, всосавшиеся аминокислоты в кишечнике попадают через портальную систему в печень, а затем поступают в кровь.

Дальнейший катаболизм аминокислот до конечных продуктов представляет собой совокупность реакций дезаминирования, трансаминирования и декарбоксилирования. При этом каждой индивидуальной аминокислоте соответствует свой специфический метаболический путь.

Дезаминирование аминокислот

Дезаминирование - это отщепление аминогрупп от аминокислот с образованием аммиака. Именно с реакций дезаминирования чаще всего начинается катаболизм аминокислот. В живых организмах возможно четыре типа дезаминирования аминокислот.

Общим продуктом всех четырех типов дезаминирования является аммиак - довольно токсичное для клеток и тканей соединение, поэтому он подвергается обезвреживанию в организме (см. далее). В результате дезаминирования за счет «потерянных» в форме аммиака аминогрупп уменьшается суммарное количество аминокислот. Для большинства живых организмов, в том числе и человека, характерно окислительное дезаминирование аминокислот, в то время как другие типы дезаминирования встречаются только у некоторых микроорганизмов.

Окислительное дезаминирование L-аминокислот осуществляется оксидазами, присутствующими в печени и почках. Распространенным коферментом оксидазы L-аминокислот является ФМН, выполняющий роль переносчика водорода с аминокислоты на кислород. Суммарная реакция окислительного дезаминирования выглядит следующим образом:

R-CH(NH 2)-COOH + ФМН + H 2 O >

> R-CO-COOH + ФМНН 2 + NH 3 + Н 2 О 2

В ходе реакции образуется промежуточное соединение - иминокислота, которая затем гидратируется с образованием кетокислоты. Кроме кетокислоты и аммиака - как основных продуктов дезаминирования, в данной реакции образуется еще и пероксид водорода, который затем разлагается на воду и кислород при участии каталазы:

Н 2 О 2 > Н 2 О + ЅО 2

Окислительное дезаминирование, как самостоятельный процесс, играет незначительную роль в превращении аминогрупп аминокислот; с большой скоростью дезаминируется только глутаминовая кислота. Данную реакцию катализирует фермент глутаматдегидрогеназа, коферментом которой выступает NAD или NADH. Активность глутаматдегидрогеназы регулируется аллостерическими модификаторами, в роли ингибиторов выступают ГТФ и АТФ, а в роли активаторов - ГДФ и АДФ. Окислительное дезаминирование глутаминовой кислоты можно представить следующей схемой:

НООС-CH 2 -CH 2 -CH(NH 2)-COOH + NAD >

> НООС-CH 2 -CН 2 -СО-СOOH + NH3 + (NADH + Н+)

Данная реакция обратима, но в условиях живой клетки равновесие реакции смещено в сторону образования аммиака. Другие, не окислительные типы дезаминирования характерны для cерина, цистеина, треонина и гистидина. Остальные аминокислоты подвергаются трансдезаминированию.

Трансдезаминирование. Трансдезаминирование представляет собой основной путь катаболического распада аминокислот. По названию процесса нетрудно догадаться, что он протекает в два этапа. Первый - трансаминирование, а второй - собственно окислительное дезаминирование аминокислоты. Трансаминирование катализируется ферментами аминотрансферазами, называемыми также просто трансаминазами. В качестве кофермента аминотрансферазы выступает пиридоксальфосфат (витамин В6). Суть трансаминирования состоит в переносе аминогруппы с б-aминокислоты на б-кетокислоту. Таким образом, реакция трансаминирования является межмолекулярным окислительно-восстановительным процессом, в котором участвуют атомы углерода не только взаимодействующих аминокислот, но и пиридоксальфосфата.

Декарбоксилирование аминокислот

Декарбоксилирование аминокислот представляет собой процесс отщепления карбоксильной группы от аминокислоты в форме СО2. Декарбоксилированию в условиях живого организма могут подвергаться некоторые аминокислоты и их производные. Декарбоксилирование катализируется специальными ферментами - декарбоксилазами, коферментом которых (за исключением гистидиндекарбоксилазы) служит пиридоксальфосфат. Продуктами декарбоксилирования являются амины, обладающие биологической активностью - биогенные амины. К этой группе соединений принадлежат большинство нейромедиаторов и регуляторных факторов местного действия (тканевые медиаторы, регулирующие обмен веществ). Реакцию декарбоксилирования произвольной аминокислоты можно представить в следующем виде:

Декарбоксилаза

Образование биологически активных аминов

Табл. Предшественники, химическое строение, биологическая роль биогенных аминов

Нарушения обмена аминокислот

Обмен веществ в организме - очень важный процесс. Любое отклонение от нормы может привести к ухудшению состояния здоровья человека. Различают наследственные и приобретенные нарушения обмена аминокислот. Наибольшая скорость обмена аминокислот наблюдается в нервной ткани. По этой причине в психоневрологической практике различные наследственные аминоацидопатии считаются одной из причин слабоумия.

Нарушение обмена тирозина.

Тирозин, помимо участи в синтезе белков, является предшественииком гормонов надпочечников адреналина, норадреналина, медиатора дофамина, гормонов щитовидной железы тироксины трийодтиронина, пигментов. Нарушение обмена тирозина многочисленны и называются тирозинемии.

Тирозинемия I типа.

Этиология. Болезнь возникает при недостаточности фумарилацетоацетат-гидролазы . При этом накапливается фумарилацетоацетат и его метаболиты, поражающие печень и почки.

Клиническая картина.

Острая форма составляет большинство случаев заболевания с началом в возрасте 2-7 мес. и смертью 90% больных в возрасте 1-2 года из-за недостаточности печени.

При хронической форме болезнь развивается позднее, медленнее прогрессирует. Продолжительность жизни около 10 лет. Основы лечения . Лечение малоэффективно. Используется диета со снижением количества белка, фенилаланина и тирозина, инъекции глутатиона. Необходима трансплантации печени.

Тирозинемия 2 типа. Гораздо более редкое заболевание.

Этиология. Болезнь возникает при недостаточности тирозин-аминотрансферазы.

Клиническая картина. Задержка умственного и физического развития, микроцефалия, катаракты и кератоз роговицы (псевдогерпетический кератит), гиперкератоз кожи, членовредительство, нарушение тонкой координации движений.

Основы лечения . Эффективна диета с низким содержанием тирозина, при этом поражения кожи и роговицы быстро исчезают.

Тирозинемия новорожденных.

Этиология. Тирозинемия новорожденных (тип 3)- результат недостаточности гидроксифенилпируват-гидроксилазы. Чаще наблюдается у недоношенных детей.

Клиническая картина. Сниженная активность и летаргия. Аномалия считается безвредной. Дефицит аскорбиновой кислоты усиливает клиническую картину.

Основы лечения. Диета со снижением количества белка, фенилаланина, тирозина и высокие дозы аскорбиновой кислоты.

Алкаптонурия.

Этиология. Генетическая аутосомно-рецессивная энзимопатия. В основе заболевания лежит снижение активности печеночного фермента гомогентизат-оксидазы, в результате в организме накапливается гомогентизиновая кислота.

Клиническая картина. Так гомогентизат на воздухе полимеризуется в меланиноподобное соединение, то наиболее частым и постоянным симптомом является темная моча, на пеленке и нажнем белье остаются темно-коричневые пятна. Другим образом в детском возрасте болезнь не проявляется.

С возрастом гомогентизиновая к-та накапливается в соединительно-тканных образованиях, склерах и коже, вызывает шиферно-глубокий оттенок ушного и носового хрящей, окрашивание участков одежды, потеющими участками тела (подмышки).

Одновременно гомогентизиновая к-та ингибирует лизилгидроксилазу, препятствуя синтезу коллагена, что делает хрупкими хрящевые образования. К пожилому возрасту наступает дегенеративный артроз позвоночника и крупных суставов, межпозвонковые пространства сужены.

Основы лечения. Хотя эффективные способы неизвестны, по аналогии с другими аминокислотными нарушениями рекомендуется с раннего возраста ограничить потребление фенилаланина и тирозина, что должно препятствовать развитию охроноза и суставных нарушений. Назначают большие дозы аскорбиновой к-ты для защиты активности лизилоксидазы.

Альбинизм

Этиология. Заболевание обусловлено полным или частичным дефектом синтеза фермента тирозиназы (частота 1:20000), необходимой для синтеза диоксифенилаланина в пигментных клетках.

Клиническая картина. При полном отсутствии фермента-тотальная делигментация кожи, волос, глаз, причем окраска одинакова для всех расовых групп и не меняется с возрастом. Кожа не загорает, совершенно отсутствуют невусы, пигментные пятна, развиваются фотодерматиты. Сильно выражены нистагм, светобоязнь, дневная слепота, красный зрачковый рефлекс. При частичной недостаточности отмечаются светло-желтые волосы, слабопигментированные родинки, очень светлая кожа.

Паркинсонизм .

Этиология. Причинной паркинсонизма (частота после 60 лет 1:200) является низкая активность тирозин-гидроксилазы или ДОФА-декабоксилазы в нервной ткани, при этом развивается дефицит нейромедиатора дофамина и накопление тирамина.

Клиническая картина. Наиболее распространенными симптомами являются ригидность мышц, скованность движений, тремор и самопроизвольные движения.

Основы лечения. Требуется систематическое введение лекарственных аналогов дофамина и применение ингибиторов моноаминоксидазы.

Фумарат Ацетоацетат

Фенилкетонурия

Этиология. Дефицит фенилаланингидроксилазы. Фенилаланин превращается в фенилпируват.

Клиническая картина.

§ Нарушение миелинирования нервов

§ Маса мозку ниже нормы.

§ Умственное и физическое отставание.

Диагностические критерии:

§ уровень фенилаланина в крови.

§ FeCl3 тест.

§ пробы ДНК (пренатально).

Заключение

Обмен белков и аминокислот играет важнейшую и незаменимую роль в жизни организмов. Это отточенный до мелочей механизм. Изучение обмена белков позволяет детально понять глубокий смысл, заложенный в важнейшем биологическом постулате, гласящем, что «организмы делаются белками». В этом постулате заключена та чрезвычайная биологическая значимость, которая присуща исключительно белковым соединениям.

Основная литература

1.Ершов ЮА, Зайцева НИ. Основы биохимия для иженеров. МГТУ 2010

2.Ершов ЮА..соавт. Общая химия. М. 2011.

3.Ленинджер А. Основы биохимии. М. Мир. 1985. 1055 с.

4.Николаев А. Я., Биологическая химия, М. «Медицинское информационное агентство», 2004 г.

5.Флорентьев В. Л., Биохимия. - М., 2004. - 464 с.

6. Березов Т.Т., Коровкин Б.Ф., Биологическая химия. М, Медицина,1998

7. Ершов Ю.А. и др. Общая химия. 8-е изд. М. ВШ. 2009. 560 с.

8. Ершов Ю.А. и др. Кинетика и термодинамика биохимических и физиологических процессов. М. Медицина. 1990. 208 с.

9. Кольман Я., Рем К.-Г. Наглядная биохимия. М., Мир, 2004. 269 с.

Размещено на Allbest.ru

...

Подобные документы

    Процесс обмена белков, аминокислот и отдельных аминокислот. Биогенные амины, их роль и значение. Окисление биогенных аминов (моноаминоксидазы). Роль гистамина в развитии воспаления и аллергических реакций. Антигистаминные препараты, их задачи и функции.

    презентация , добавлен 13.04.2015

    Изучение гормонов - производных аминокислот, особенностей их синтеза и механизма действия клетки. Физиологическая роль катехоламинов и их функции - мобилизации защитных сил организма в условиях стрессового воздействия. Анализ из влияния на секрецию.

    контрольная работа , добавлен 27.02.2010

    Роль минеральных веществ в обеспечении нормального течения процессов жизнедеятельности организма человека. Препараты, содержащие макро- и микроэлементы. Препараты аминокислот, лекарственные препараты для парентерального питания при невозможности обычного.

    реферат , добавлен 19.08.2013

    Роль аминокислот для организма человека и наследственные нарушения их обмена. Фенилкетонурия и формы заболевания. Частота гомоцистинурии и комплекс ее признаков. Гистидинемия: клинические проявлений и формы. Биохимическая диагностика лейкодистрофии.

    реферат , добавлен 11.05.2009

    Особое место белкового обмена в многообразных превращениях веществ во всех живых организмах. Нарушения биосинтеза и распада белков в органах и тканях. Наследственные дефекты биосинтеза белков. Нарушения выделения и конечных этапов метаболизма аминокислот.

    реферат , добавлен 22.01.2010

    Описание фенилкетонурии - наследственного заболевания обмена одной из важных аминокислот (фенилаланина), в связи с недостатком или полным отсутствием необходимого для обмена фермента. Этиология и патогенез болезни, неврологическая симптоматика, лечение.

    презентация , добавлен 15.05.2015

    Роль печени и почек в обмене белков. Нормы белков в питании. Участие аминокислот в процессах биосинтеза и катаболизма. Тканевой обмен нуклеотидов. Синтез и катаболизм ДНК и РНК. Регуляция процессов азотистого обмена. Патология азотистого обмена.

    курсовая работа , добавлен 06.12.2008

    Ознакомление с понятием, сущностью и процессами метаболизма. Рассмотрение особенностей создания молекул аминокислот, углеводов, липидов и нуклеиновых кислот. Образование всех клеток и тканей, выделение энергии в процессе обмена веществ в организме.

    презентация , добавлен 02.06.2015

    Классификация и клинические проявления нарушений обмена веществ. Наследственные нарушения обмена веществ. Распространенность наследственных заболеваний обмена веществ с неонатальным дебютом. Клиническая характеристика врожденных дефектов метаболизма.

    презентация , добавлен 03.07.2015

    Роль клеточных органелл в энергетических процессах, нервной клетки. Обмен углеводов и особенности энергетического обеспечения мозга. Метаболизм липидов, белков и аминокислот. Роль воды в обеспечении функционирования. Церебральный энергетический обмен.

Обмен аминокислот

Белки являются наиболее распространенными органическими веществами организма, которые составляют большую часть сухой массы тела (10-12 кг). Метаболизм белков рассматривается как метаболизм аминокислот.

Переваривание белков

Перевариванию и всасыванию подвергаются пищевые и эндогенные белки. Эндогенные белки (30-100 г/сутки) представлены пищеварительными ферментами и белками слущивающегося эпителия кишечника. Переваривание и всасывание белков происходит очень эффективно и поэтому только около 5-10 г белков теряется с кишечным содержимым. Пищевые белки подвергаются денатурации, что облегчает их переваривание.

Ферменты переваривания белков (гидролазы ) специфически расщепляют пептидные связи в белках и поэтому называются пептидазами . Они делятся на 2 группы: 1) эндопептидазы – расщепляют внутренние пептидные связи и образуются фрагменты белков (пепсин, трипсин); 2) экзопептидазы действуют на пептидную связь концевых аминокислот. Экзопептидазы подразделяются на карбоксипептидазы (отщепляют С-концевые аминокислоты) и аминопептидазы (отщепляют N-концевые аминокислоты).

Протеолитические ферменты переваривания белков продуцируются в желудке , поджелудочной железе и тонком кишечнике . В ротовой полости белки не перевариваются из-за отсутствия ферментов в слюне.

Желудок . Переваривание белков начинается в желудке. При поступлении белков в слизистой оболочке желудка вырабатывается гормоноподобное вещество гастрин , которое активирует секрецию HCl париетальными клетками желудка и пепсиногена – главными клетками желудка.

Соляная кислота (рН желудочного сока 1,0-2,5) выполняет 2 наиболее важные функции: вызывает денатурацию белков и гибель микроорганизмов. У взрослого человека ферментами желудочного сока являются пепсин и гастриксин , у грудных детей реннин .

1. Пепсин вырабатывается в главных клетках слизистой оболочки желудка в неактивной форме в виде пепсиногена (м.м. 40000 Да). Пепсиноген превращается в активный пепсин в присутствии НCl и аутокаталитически под действием других молекул пепсина: с N-конца молекулы отщепляется 42 аминокислотных остатка в виде 5 нейтральных пептидов (м.м. около 1000 Да) и одного щелочного пептида (м.м. 3200 Да). М.м. пепсина 32700 Да, оптимум рН 1,0-2,0 . Пепсин катализирует гидролиз пептидных связей, образованных аминогруппамиароматических аминокислот (фен, тир), а также аспарагиновой, глутаминовой кислот, лейцина и пар ала-ала, ала-сер.

2. Из пепсиногена образуется другой пепсиноподобный фермент - гастриксин (м.м. 31500 Да), оптимум рН 3,0-5,0. В нормальном желудочном соке соотношение пепсин/гастриксин 4:1.

3. Реннин содержится в желудочном соке грудных детей; оптимум рН 4,5. Фермент створаживает молоко, т.е. в присутствии ионов кальция переводит растворимый казеиноген в нерастворимый казеин . Его продвижение по пищеварительному тракту замедляется, что увеличивает время действия протеиназ.

В результате действия ферментов в желудке образуются пептиды и небольшое количество свободных аминокислот, которые стимулируют высвобождение холецистокинина в двенадцатиперстной кишке.

Двенадцатиперстная кишка . Содержимое желудка поступает в 12-перстную кишку и стимулирует секрецию секретина в кровь. Секретин активирует секрецию в поджелудочной железе бикарбонатов, которые нейтрализуют соляную кислоту и повышают рН до 7,0. Под действием образованных свободных аминокислот в верхнем отделе 12-перстной кишки вырабатывается холецистокинин , который стимулирует секрецию ферментов поджелудочной железы и сокращение желчного пузыря.

Переваривание белков осуществляет группа сериновых (в активном центре ОН-группа серина) протеиназ панкреатического происхождения: трипсин, химотрипсин, карбоксипептидаза, эластаза.

1. Ферменты вырабатываются в виде неактивных предшественников - проферментов. Синтез протеолитических ферментов в виде неактивных предшественников защищает экзокринные клетки поджелудочной железы от разрушения. В поджелудочной железе синтезируется также панкреатический ингибитор трипсина , который предотвращает синтез активных ферментов внутри поджелудочной железы.

2. Ключевым ферментом для активации проферментов является энтеропептидаза (энтерокиназа ), секретируемая клетками слизистой кишечника.

3. Энтерокиназа отщепляет гексапептид от N-конца трипсиногена и образуется активный трипсин , который затем активирует остальные протеиназы.

4. Трипсин катализирует гидролиз пептидных связей, в образовании которых участвуют карбоксильные группы основных аминокислот (лизин, аргинин).

5.Химотрипсин - эндопептидаза, вырабатывается в поджелудочной железе в виде химотрипсиногена. В тонком кишечнике при участии трипсина образуются активные формы химотрипсина - a, d и p. Химотрипсин катализирует гидролиз пептидных связей, образованных карбоксильными группами ароматических аминокислот .

6. Специализированные белки соединительной ткани - эластин и коллаген - перевариваются с помощью панкреатических эндопептидаз - эластазы и коллагеназы .

7. Панкреатические карбоксипептидазы (А и В) являются металлоферментами, содержащими ионы Zn 2+ . Обладают субстратной специфичностью и отщепляют С-концевые аминокислоты. В результате переваривания в 12-перстной кишке образуются небольшие пептиды (2-8 аминокислот) и свободные аминокислоты.

В тонком кишечнике происходит конечное переваривание коротких пептидов и всасывание аминокислот. Здесь действуют аминопептидазы кишечного происхождения, отщепляющие N-концевые аминокислоты, а также три- и дипептидазы .

Всасывание аминокислот

В тонком кишечнике всасываются свободные аминокислоты, дипептиды и небольшое количество трипептидов. Ди- и трипептиды после всасывания гидролизуются на свободные аминокислоты в цитозоле эпителиальных клеток. После приема белковой пищи только свободные аминокислоты обнаруживаются в портальной вене. Максимальная концентрация аминокислот в крови достигается через 30-50 мин после приема пищи.

Свободные L-аминокислоты переносятся через клеточные мембраны вторичным активным транспортом, сопряженным с функционированием Na + ,К + -АТФазы. Перенос аминокислот внутрь клеток осуществляется чаще всего как симпорт аминокислот и ионов натрия. Считают, что существует, по меньшей мере, шесть транспортных систем (транслоказ), каждая из которых настроена на перенос близких по строению аминокислот: 1) нейтральных аминокислот с небольшим радикалом (ала, сер, три); 2) нейтральных аминокислот с объемным радикалом и ароматических аминокислот (вал, лей, иле, мет, фен, тир); 3) кислых аминокислот (асп, глу), 4) основных аминокислот (лиз, арг), 5) пролина, 6) β-аминокислот (таурин, β-аланин). Эти системы, связывая ионы натрия, индуцируют переход белка-переносчика в состояние с сильно увеличенным сродством к аминокислоте; Nа + стремится к транспорту в клетку по градиенту концентрации и одновременно переносит внутрь клетки молекулы аминокислоты. Чем выше градиент Na + , тем выше скорость всасывания аминокислот, которые конкурируют друг с другом за соответствующие участки связывания в транслоказе.

Известны другие механизмы активного транспорта аминокислот через плазматическую мембрану. А.Майстером предложена схема трансмембранного переноса аминокислот через плазматические мембраны, получившая название g-глутаминильный цикл.

В соответствии с гипотезой γ-глутамильного цикла транспорта аминокислот через клеточные мембраны роль переносчика аминокислот принадлежит широко распространенному в биологических системах трипептиду глутатиону .

1. Главную роль в этом процессе играет фермент g-глутаминилтрансфераза (транспептидаза), который локализован в плазматической мембране. Этот фермент осуществляет перенос g-глутамильной группы внутриклеточного трипептида глутатиона (g-глу-цис-гли) на вне­клеточную аминокислоту.

2. Образовавшийся комплекс g-глутамил-аминокис­лота проникает в цитозоль клетки, где аминокислота освобождается.

3. g-Глутами­льная группа в виде 5-оксопролина через ряд ферментативных стадий и учас­тии АТФ соединяется с цис-гли , что ведет к восстановлению молекулы глутатио­на. При переносе следующей молекулы аминокислоты через мембрану цикл превращений повторяется. Для транспорта одной аминокислоты используется 3 молекулы АТФ .

Все ферменты γ-глутамильного цикла обнаружены в высоких концентрациях в разных тканях – почках, эпителии ворсинок тонкого кишечника, слюнных железах желчном протоке и др. После всасывания в кишечнике аминокислоты через воротную вену поступают в печень, а затем разносятся кровью во все ткани организма.

Всасывание интактных белков и пептидов: в течение короткого периода после рождения в кишечнике могут всасываться интактные пептиды и белки путем эндоцитоза или пиноцитоза. Этот механизм важен для переноса иммуноглобулинов матери в организм ребенка. У взрослых всасывание интактных белков и пептидов не происходит. Тем не менее, у некоторых людей наблюдается этот процесс, что вызывает образование антител и развитие пищевой аллергии. В последние годы высказывается мнение о возможности переноса фрагментов полимерных молекул в лимфатические сосуды в области пейеровых бляшек слизистой дистальных отделов тонкого кишечника.

Аминокислотный фонд организма

В организме взрослого человека присутствует около 100 г свободных аминокислот, которые составляют аминокислотный фонд (пул). Глутамат и глутамин составляют 50% аминокислот, эссенциальные (незаменимые) аминокислоты – около 10%. Концентрация внутриклеточных аминокислот всегда выше, чем внеклеточных . Аминокислотный фонд определяется поступлением аминокислот и метаболическими путями их утилизации.

Источники аминокислот

Обмен белков организма, поступление белков с пищей и синтез заменимых аминокислот являются источниками аминокислот в организме.

1. Белки находятся в динамическом состоянии , т.е. обмениваются. В организме человека ежесуточно обменивается примерно 300-400 г белков. Период полураспада белков различен - от минут (белки плазмы крови) до многих суток (чаще 5-15 суток) и даже месяцев и лет (например, коллаген). Аномальные, дефектные и поврежденные белки разрушаются, поскольку не могут использоваться организмом и ингибируют процессы, для которых необходимы функциональные белки. К факторам, влияющим на скорость разрушения белков относятся: а) денатурация (т.е. потеря нативной конформации) ускоряет протеолиз; б) активация лизосомальных ферментов; в) глюкокортикоиды, избыток тироидных гормонов повышают протеолиз; г) инсулин снижает протеолиз и повышает синтез белков.

2.Пищевые белки . Около 25% обменивающихся белков, т.е. 100 г аминокислот подвергается распаду, и эти потери восполняются пищей . Поскольку аминокислоты являются главным источником азота для азотсодержащих соединений, они определяют состояние азотистого баланса организма. Азотистый баланс - это разность между азотом поступающим в организм и азотом, выводимым из организма. Азотистое равновесие наблюдается, если количество азота, поступающего в организм равно количеству азота, выводимого из организма (у взрослых здоровых людей). Положительный азотистый баланс наблюдается, если количество азота, поступающего в организм больше количества азота, выводимого из организма (рост, введение анаболических препаратов, развитие плода). Отрицательный азотистый баланс наблюдается, если количество азота, поступающего в организм меньше количества азота, выводимого из организма (старение, белковое голодание, гипокинезия, хронические заболевания, ожоги). Коэффициент изнашивания Рубнера - при 8-10 дневном белковом голодании в тканях расщепляется примерно постоянное количество белков - 23,2 г, или 53 мг азота в сутки на 1 кг массы тела (0,053×6,25×70 =23,2, где 6,25 - коэффициент, показывающий, что в белках содержится около 16% азота; 70 кг - масса тела человека). Если в пище будет содержаться 23,2 г белков в сутки, то развивается отрицательный азотистый баланс. Физиологический минимум белков (около 30-45 г в сутки) ведет к азотистому равновесию (но на короткое время). При средней физической нагрузке человеку требуется в сутки 100-120 г белка.

Публикации по теме