Найти объем тела полученного вращением указанных линий. Как вычислить объем тела вращения

I. Объемы тел вращения. Предварительно изучите по учебнику Г. М. Фихтенгольца главу XII, п°п° 197, 198* Разберите подробно примеры, приведенные в п° 198.

508. Вычислить объем тела, образуемого вращением эллипсаВокруг оси Ох.

Таким образом,

530. Найти площадь поверхности, образованной вращением вокруг оси Ox дуги синусоиды у = sin х от точки X = 0 до точки X = It.

531. Вычислить площадь поверхности конуса с высотой h и радиусом г.

532. Вычислить площадь поверхности, образованной

вращением астроиды х3 -)- у* — а3 вокруг оси Ох.

533. Вычислить площадь поверхности, образованной цращением петли кривой 18 уг — х (6 — х)г вокруг оси Ох.

534. Найти поверхность тора, производимого вращением круга X2 - j - (у—З)2 = 4 вокруг оси Ох.

535. Вычислить площадь поверхности, образованной вращением окружности X = a cost, y = asint вокруг оси Ох.

536. Вычислить площадь поверхности, образованной вращением петли кривой х = 9t2, у = St — 9t3 вокруг оси Ох.

537. Найти площадь поверхности, образованной вращением дуги кривой х = е*sint, у = el cost вокруг оси Ox

от t = 0 до t = —.

538. Показать, что поверхность, производимая вращением дуги циклоиды х = a (q> —sin ф), у = а (I — cos ф) вокруг оси Oy, равна 16 и2 о2.

539. Найти поверхность, полученную вращением кардиоидыВокруг полярной оси.

540. Найти площадь поверхности, образованной вращением лемнискатыВокруг полярной оси.

Дополнительные задачи к главе IV

Площади плоских фигур

541. Найтивсю площадь области, ограниченной кривойИ осью Ох.

542. Найти площадь области, ограниченной кривой

И осью Ох.

543. Найти часть площади области, расположенной в первом квадранте и ограниченной кривой

л осями координат.

544. Найти площадь области, содержащейся внутри

петли:

545. Найти площадь области, ограниченной одной петлей кривой:

546. Найти площадь области, содержащейся внутри петли:

547. Найти площадь области, ограниченной кривой

И осью Ох.

548. Найти площадь области, ограниченной кривой

И осью Ох.

549. Найти площадь области, ограниченной осью Oxr

прямойИ кривой

плоской фигуры вокруг оси

Пример 3

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.

2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначала обязательно прочитайте первый!

Решение : Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом. Причем, площадь фигуры находится как сумма площадей:

– на отрезке ;

– на отрезке .

Поэтому:

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание : Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ :

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.


Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ :

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 7

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и .

Решение : Выполним чертеж:


Попутно знакомимся с графиками некоторых других функций. Такой вот интересный график чётной функции ….

Для цели нахождения объема тела вращения достаточно использовать правую половину фигуры, которую я заштриховал синим цветом. Обе функции являются четными, их графики симметричны относительно оси , симметрична и наша фигура. Таким образом, заштрихованная правая часть, вращаясь вокруг оси , непременно совпадёт с левой нештрихованной частью.

Использование интегралов для нахождения объемов тел вращения

Практическая полезность математики обусловлена тем, что без

конкретных математических знаний затруднено понимание принципов устройства и использование современной техники. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной техникой, находить в справочниках применять нужные формулы, составлять несложные алгоритмы для решения задач. В современном обществе все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики. Таким образом, для школьника математика становится профессиональным значимым предметом. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитывает умение действовать по заданному алгоритму и конструировать новые алгоритмы.

Изучая тему о применении интеграла для вычисления объемов тел вращения, я предлагаю учащимся на факультативных занятиях рассмотреть тему: «Объемы тел вращения с применением интегралов». Ниже привожу методические рекомендации по рассмотрению данной темы:

1.Площадь плоской фигуры.

Из курса алгебры мы знаем, что к понятию определенного интеграла привели задачи практического характера..gif" width="88" height="51">.jpg" width="526" height="262 src=">

https://pandia.ru/text/77/502/images/image006_95.gif" width="127" height="25 src=">.

Для нахождения объема тела вращения, образованного вращением криволинейной трапеции вокруг оси Оx, ограниченной прерывной линией y=f(x), осью Оx, прямыми x=a и x=b вычислим по формуле

https://pandia.ru/text/77/502/images/image008_26.jpg" width="352" height="283 src=">Y

3.Объем цилиндра.

https://pandia.ru/text/77/502/images/image011_58.gif" width="85" height="51">..gif" width="13" height="25">..jpg" width="401" height="355">Конус получается путем вращения прямоугольного треугольника АВС(С=90) вокруг оси Оx на котором лежит катет АС.

Отрезок АВ лежит на прямой y=kx+c, где https://pandia.ru/text/77/502/images/image019_33.gif" width="59" height="41 src=">.

Пусть а=0, b=H (Н- высота конуса), тогда Vhttps://pandia.ru/text/77/502/images/image021_27.gif" width="13" height="23 src=">.

5.Объем усеченного конуса.

Усеченный конус можно получить путем вращения прямоугольной трапецией АВСD (СDOx) вокруг оси Оx.

Отрезок АВ лежит на прямой y=kx+c, где , c=r.

Так как прямая проходит через точку А (0;r).

Таким образом прямая имеет вид https://pandia.ru/text/77/502/images/image027_17.gif" width="303" height="291 src=">

Пусть а=0, b=H (Н- высота усеченного конуса), тогда https://pandia.ru/text/77/502/images/image030_16.gif" width="36" height="17 src=">= .

6. Объем шара.

Шар можно получить путем вращения круга с центром (0;0) вокруг оси Оx. Полуокружность, расположенная над осью Оx, задается уравнением

https://pandia.ru/text/77/502/images/image034_13.gif" width="13" height="16 src=">x R.

Определение 3. Тело вращения – это тело, полученное вращением плоской фигуры вокруг оси, не пересекающей фигуру и лежащей с ней в одной плоскости.

Ось вращения может и пересекать фигуру, если это ось симметрии фигуры.

Теорема 2.
, осью
и отрезками прямых
и

вращается вокруг оси
. Тогда объём получающегося тела вращения можно вычислить по формуле

(2)

Доказательство. Для такого тела сечение с абсциссой – это круг радиуса
, значит
и формула (1) даёт требуемый результат.

Если фигура ограничена графиками двух непрерывных функций
и
, и отрезками прямых
и
, причём
и
, то при вращении вокруг оси абсцисс получим тело, объём которого

Пример 3. Вычислить объём тора, полученного вращением круга, ограниченного окружностью

вокруг оси абсцисс.

Решение. Указанный круг снизу ограничен графиком функции
, а сверху –
. Разность квадратов этих функций:

Искомый объём

(графиком подынтегральной функции является верхняя полуокружность, поэтому написанный выше интеграл – это площадь полукруга).

Пример 4. Параболический сегмент с основанием
, и высотой, вращается вокруг основания. Вычислить объём получающегося тела («лимон» Кавальери).

Решение. Параболу расположим как показано на рисунке. Тогда её уравнение
, причем
. Найдём значение параметра:
. Итак, искомый объём:

Теорема 3. Пусть криволинейная трапеция, ограниченная графиком непрерывной неотрицательной функции
, осью
и отрезками прямых
и
, причём
, вращается вокруг оси
. Тогда объём получающегося тела вращения может быть найден по формуле

(3)

Идея доказательства. Разбиваем отрезок
точками

, на части и проводим прямые
. Вся трапеция разложится на полоски, которые можно считать приближенно прямоугольниками с основанием
и высотой
.

Получающийся при вращении такого прямоугольника цилиндр разрежем по образующей и развернём. Получим «почти» параллелепипед с размерами:
,
и
. Его объём
. Итак, для объёма тела вращения будем иметь приближенноё равенство

Для получения точного равенства надо перейти к пределу при
. Написанная выше сумма есть интегральная сумма для функции
, следовательно, в пределе получим интеграл из формулы (3). Теорема доказана.

Замечание 1. В теоремах 2 и 3 условие
можно опустить: формула (2) вообще нечувствительна к знаку
, а в формуле (3) достаточно
заменить на
.

Пример 5. Параболический сегмент (основание
, высота) вращается вокруг высоты. Найти объём получающегося тела.

Решение. Расположим параболу как показано на рисунке. И хотя ось вращения пересекает фигуру, она – ось – является осью симметрии. Поэтому надо рассматривать лишь правую половину сегмента. Уравнение параболы
, причем
, значит
. Имеем для объёма:

Замечание 2. Если криволинейная граница криволинейной трапеции задана параметрическими уравнениями
,
,
и
,
то можно использовать формулы (2) и (3) с заменойна
и
на
при измененииt от
до.

Пример 6. Фигура ограничена первой аркой циклоиды
,
,
, и осью абсцисс. Найти объём тела, полученного вращением этой фигуры вокруг: 1) оси
; 2) оси
.

Решение. 1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем студентам самостоятельно провести все вычисления.

Замечание 3. Пусть криволинейный сектор, ограниченный непре-рывной линией
и лучами
,

, вращается вокруг полярной оси. Объём получающегося тела можно вычислить по формуле.

Пример 7. Часть фигуры, ограниченной кардиоидой
, лежащая вне окружности
, вращается вокруг полярной оси. Найти объём тела, которое при этом получается.

Решение. Обе линии, а значит и фигура, которую они ограничивают, симметричны относительно полярной оси. Поэтому необходимо рассматривать лишь ту часть, для которой
. Кривые пересекаются при
и

при
. Далее, фигуру можно рассматривать как разность двух секторов, а значит и объём вычислять как разность двух интегралов. Имеем:

Задачи для самостоятельного решения.

1. Круговой сегмент, основание которого
, высота , вращается вокруг основания. Найти объём тела вращения.

2. Найти объём параболоида вращения, основание которого , а высота равна.

3. Фигура, ограниченная астроидой
,
вращает-ся вокруг оси абсцисс. Найти объём тела, которое получается при этом.

4. Фигура, ограниченная линиями
и
вращается вокруг оси абсцисс. Найти объём тела вращения.

Тема: «Вычисление объемов тел вращения с помощью определенного интеграла»

Тип урока: комбинированный.

Цель урока: научиться вычислять объемы тел вращения с помощью интегралов.

Задачи:

закрепить умение выделять криволинейные трапеции из ряда геометрических фигур и отработать навык вычислений площадей криволинейных трапеций;

познакомиться с понятием объемной фигуры;

научиться вычислять объемы тел вращения;

способствовать развитию логического мышления, грамотной математической речи, аккуратности при построении чертежей;

воспитывать интерес к предмету, к оперированию математическими понятиями и образами, воспитать волю, самостоятельность, настойчивость при достижении конечного результата.

Ход урока

I. Организационный момент.

Приветствие группы. Сообщение учащимся целей урока.

Сегодняшний урок мне бы хотелось начать с притчи. “Жил мудрец, который знал все. Один человек захотел доказать, что мудрец знает не все. Зажав в ладонях бабочку, он спросил: “Скажи, мудрец, какая бабочка у меня в руках: мертвая или живая?” А сам думает: “Скажет живая - я ее у мертвлю, скажет мертвая - выпущу”. Мудрец, подумав, ответил: “Все в твоих руках”.

Поэтому давайте сегодня плодотворно поработаем, приобретем новый багаж знаний, и полученные умения и навыки будем применять в дальнейшей жизни и в практической деятельности.“Все в Ваших руках”.

II. Повторение ранее изученного материала.

Давайте вспомним основные моменты ранее изученного материала. Для этого выполним задание“Исключите лишнее слово”.

(Студенты говорят лишнее слово.)

Правильно “Дифференциал”. Попробуйте оставшиеся слова назвать одним общим словом. (Интегральное исчисление.)

Давайте вспомним основные этапы и понятия связанные с интегральным исчислением..

Задание. Восстановите пропуски. (Студент выходит и вписывает маркером необходимые слова.)

Работа в тетрадях.

Формулу Ньютона-Лейбница вывели английский физик Исаака Ньютона (1643-1727) и немецкий философ Готфрида Лейбница (1646-1716). И это не удивительно, ведь математика - язык, на котором говорит сама природа.

Рассмотрим, как при решении практических заданий используется эта формула.

Пример 1: Вычислить площадь фигуры, ограниченной линиями

Решение: Построим на координатной плоскости графики функций . Выделим площадь фигуры, которую надо найти.

III. Изучение нового материала.

Обратите внимание на экран. Что изображено на первом рисунке? (На рисунке представлена плоская фигура.)

Что изображено на втором рисунке? Является ли эта фигура плоской? (На рисунке представлена объемная фигура.)

В космосе, на земле и в повседневной жизни мы встречаемся не только с плоскими фигурами, но и объемными, а как же вычислить объем таких тел? Например: объем планеты, кометы, метеорита, и т.д.

Об объеме задумываются и строя дома, и переливая воду из одного сосуда в другой. Правила и приёмы вычисления объёмов должны были возникать, другое дело, насколько они были точны и обоснованы.

1612 год был для жителей австрийского города Линц, где жил тогда известный астроном Иоганн Кеплер очень урожайным, особенно на виноград. Люди заготовляли винные бочки и хотели знать, как практически определить их объёмы.

Таким образом, рассмотренные работы Кеплера положили начало целому потоку исследований, увенчавшихся в последней четверти XVII в. оформлением в трудах И. Ньютона и Г.В. Лейбница дифференциального и интегрального исчисления. Математика переменных величии заняла с этого времени ведущее место в системе математических знаний.

Вот сегодня мы с вами и займемся такой практической деятельностью, следовательно,

Тема нашего урока: “Вычисление объемов тел вращения с помощью определенного интеграла”.

Определение тела вращения вы узнаете, выполнив следующее задание.

“Лабиринт”.

Задание. Найдите выход из запутанного положения и запишите определение.

IV Вычисление объемов.

При помощи определенного интеграла можно вычислить объем того или иного тела, в частности, тела вращения.

Телом вращения называется тело, полученное вращением криволинейной трапеции вокруг ее основания (рис. 1, 2)

Объем тела вращения вычисляется по одной из формул :

1. вокруг оси ОХ.

2. , если вращение криволинейной трапеции вокруг оси ОУ.

Студенты записывают основные формулы в тетрадь..

Преподаватель объясняет решение примеров на доске.

1. Найти объем тела, получаемого вращением вокруг оси ординат криволинейной трапеции, ограниченной линиями: x2 + y2 = 64, y = -5, y = 5, x = 0.

Решение.

Ответ: 1163 cm3.

2. Найти объем тела, получаемого вращением параболической трапеции, вокруг оси абсцисс y = , x = 4, y = 0.

Решение.

V . Математический тренажер.

2. Совокупность всех первообразных от данной функции называется

А) неопределенным интегралом,

Б) функцией,

В) дифференциацией.

7. Найти объем тела, получаемого вращением вокруг оси абсцисс криволинейной трапеции, ограниченной линиями:

Д/З. Закрепление нового материала

Вычислить объем тела, образованного вращением лепестка, вокруг оси абсцисс y = x2, y2 = x.

Построим графики функции. y = x2, y2 = x. График y2 = x преобразуем к виду y = .

Имеем V = V1 - V2 Вычислим объем каждой функции:

Вывод :

Определенный интеграл - это некоторый фундамент для изучения математики, которая вносит незаменимый вклад в решение задач практического содержания.

Тема “Интеграл” ярко демонстрирует связь математики с физикой, биологией, экономикой и техникой.

Развитие современной науки немыслимо без использования интеграла. В связи с этим, начинать его изучение необходимо в рамках средне специального образования!

VI . Выставление оценок. (С комментированием.)

Великий Омар Хайям - математик, поэт, философ. Он призывает быть хозяевами своей судьбы. Слушаем отрывок из его произведения:

Ты скажешь, эта жизнь - одно мгновенье.
Её цени, в ней черпай вдохновенье.
Как проведёшь её, так и пройдёт.
Не забывай: она - твоё творенье.

Публикации по теме