Оксиды растворимы в воде или нет. VI

Такое слабое химическое взаимодействие, которое отнесем к типу VI, можно выразить схемой:

Ме"" m О n = m[Ме""] Ме" + n[O] Ме" ,

где Ме"" m О n - оксид керамики или стекла; [Ме""] Ме" и [О] Ме" - твердые растворы металла и кислорода, образующих оксид ке­рамики, в свариваемом с ней металле соответственно.

Взаимодействие по этому типу может реализоваться при большой разности энергии Гиббса образования оксида керамики или стекла и оксида свариваемого металла.

На возможность взаимодействия такого типа указывают, например, явления коагуляции упрочняющих фаз (интерметаллидов, оксидов, карбидов, карбонитридов), протекающие при повышенных температурах в дисперсно-упрочненных материалах за счет растворения мелких частиц в матрице и роста крупных. Возможность и степень такого взаимодействия упрочнителя с матрицей определяют жаропрочность композиционных материалов.

Впервые количественные оценки степени взаимодействия при образовании твердых растворов по реакции типа VI между А1 2 О 3 и никелем в спеченном материале при одной температуре (1673 К) выполнены О. Кубашевским. Детальную разработку методики термодинамической оценки взаимодействия тугоплавких оксидов и металлической матрицы дисперсионно-упрочненных материалов провел Е.И. Мозжухин, результаты расчетов которого получили удовлетворительное подтверждение при химическом анализе систем А1 2 О 3 - Мо и А1 2 О 3 - Nb после их спекания при температурах (0,6-0,8) металла матрицы .

Реакция типа VI может быть принята в качестве основы для термодинамических расчетов при выполнении следующих условий: наличия хотя бы небольшой растворимости кислорода и Me"" в свариваемом металле Me"; отсутствия изменения стехиометрического состава оксида, отсутствия возможности перехода оксида, участвующего в реакции, в низшие оксиды, отсутствия возможности растворимости свариваемого металла в Ме"" m О n .

Невыполнение первого условия лишает рассматриваемое уравнение смысла: второго - приводит к реакции типа V; третьего - реакции типа VI; четвертого - вызывает необходимость дополнения уравнения реакции VI еще одним, учитывающим образование твердого раствора Me" в и Ме"" m О n совместного их решения.

В отличие от рассмотренных выше реакций типов I, II, IV, V для которых понятие термодинамического равновесия неприменимо и направление протекания (слева направо или справа налево) целиком и полностью определяется знаком
, реакция типаVI идет слева направо и полноту ее протекания определяет константа равновесия, равная произведению активностей кислорода и Ме"" в свариваемом металле Ме". Для разбавленных растворов можно активности принять равными концентрации (мольной доле) и, применяя для реакции типа VI закон действующих масс, определить их величину, т.е. равновесную концентрацию растворенных элементов в твердом растворе на основе свариваемого металла. Найденные величины и будут характеризовать равновесную степень взаимодействия свариваемых материалов.

Термодинамический расчет реакции типа VI на примере системы ZnS-Me с изложением методических особенностей приведен в работе . Результаты этого расчета в первом приближении применимы и для аналогичной системы ZnO-Me, представляющей определенный интерес при анализе свариваемости цинковых ферритов.

В основу расчета положена реакция взаимодействия с медью:

ZnS тв = Cu + [S] Cu (7.29)

Результаты расчета показали, что при взаимодействии сульфида цинка с медью термодинамически возможно растворение в меди до 0,086 ат. % серы, что на полтора порядка выше предела растворимости серы в меди при этой температуре (0,004 ат. %), т.е. выше, чем может содержаться в насыщенном твердом растворе, находящемся в равновесии с низшим сульфидом меди. Отсюда следует, что при взаимодействии ZnS с медью термодинамически возможно образование некоторого количества сульфида меди Сu 2 S.

Следовательно, термодинамический расчет взаимодействия с медью по методике Е.И. Мозжухина с использованием уравнения (7.29) дает лишь качественный результат. Эта методика применима для систем, в которых разница энергий Гиббса образования тугоплавкого оксида и оксида металла матрицы составляет величину порядка 400 кДж/г атом кислорода, в рассматриваемых же сульфидных системах подобная величина намного меньше.

Для получения количественных результатов ниже изложена дальнейшая разработка этой методики.

Сера и её соединения.

Оборудование, реактивы:

Сера (мелкие кусочки), сера (порошок), железо восстановленное, сульфит натрия сухой, концентрированная серная кислота, медь, гидроксид натрия, фенолфталеин, фуксин, сахар, перманганат калия кристаллический, спирт, оксид меди (II).

Пробирки больших - 5 шт, маленьких - 6 шт, штатив под пробирки, штатив сборный, ступка и пестик, маленький тигель, маленькая колба с газоотводной трубкой и капельной воронкой, стакан маленький, стеклянные палочки для перемешивания, колбы, вата, фарфоровые чашки, плитка электрическая.

Сера и её свойства

Особенности плавления серы.

В пробирку на 1/3 ее объема кладут мелкие кусочки серы (серный цвет для этих целей менее пригоден, так как при его плавлении наблюдается сильное вспенивание). Пробирку с серой нагревают до расплавления серы (119 "С). При дальнейшем нагревании сера темнеет и начинает загустевать (максимальное загустевание при 200"С). В этот момент пробирку на мгновение опрокидывают отверстием вниз, и сера не выльется. Еще при более сильном нагревании сера снова разжижается, а при 445"С кипит. Кипящую серу выливают в стакан или кристаллизатор с водой, делая при этом пробиркой круговое движение. В воде застывает пластическая сера. Если вынуть ее из воды (при помощи стеклянной палочки), то она растягивается подобно резине.

Реакция соединения серы и железа.

а) Опыт проводят в пробирке. Сначала готовят смесь веществ в соотношении 7: 4

(Аr(Fe): Аr(S) = 56: 32). Например, достаточно взять 3,5 г железа и 2 г серы. В полученной смеси различимы отдельные частицы серы, железа и цвет этих веществ. Если немного смеси бросить в стакан с водой, то сера всплывает (не смачивается водой), а железо тонет (смачивается водой).

Смесь можно разделить магнитом. Для этого к смеси на часовом стекле или стеклянной пластине, покрытой бумагой, подносят магнит, который притягивает железо, сера остается на часовом

стекле. Смесь переносят в пробирку, которую закрепляют в лапке штатива слегка наклонно и нагревают. Достаточно добиться начала реакции (раскаления докрасна) в одном месте смеси в - и реакция продолжается сама собой (процесс экзотермический). Для извлечения полученного сульфида железа разбивают пробирку. Итак, из двух веществ, если они были взяты в количествах, соответствующих расчетам, получилось одно вещество, имеющее свойства, отличающиеся от свойств исходных веществ.

Возможные неполадки при проведении опыта

1. Для опыта надо брать только восстановленное железо. При использовании обычных опилок реакция не идет, так как каждая крупинка их покрыта тончайшей пленкой оксидов железа, которая

мешает соприкосновению железа с серой.

2. Реакция не пойдет или будут наблюдаться только отдельные вспышки, если смесь плохо перемешана и нет достаточного контакта серы с железом.

3. Реакция не пойдет, если крупинки железа очень велики, следовательно, поверхность соприкосновения его с серой мала.

Оксид серы (IV) и сернистая кислота.

Получение оксида серы (IV) .

а) Колбу с твердым сульфитом натрия закрывают пробкой с капельной воронкой. При приливании концентрированной серной кислоты (кислоту надо приливать по каплям. Когда наблюдается

сильное выделение газа, то приливание кислоты прекращают) выделяется оксид серы (IV). Реакция идет без нагревания.

б) К меди (стружки, опилки или проволока) приливают концентрированную серную кислоту и нагревают. Собирают оксид серы (IV) вытеснением воздуха.

Растворение оксида серы (IV) в воде.

Поставить цилиндр отверстием вверх и заполнить его оксидом серы (IV). Полноту заполнения контролируют как и с углекислым газом горящей лучиной. Цилиндр закрывают стеклянной

пластиной и отверстием вниз опускают в кристаллизатор с водой. При покачивании цилиндра вода постепенно заходит в него. Растворимость оксида серы (IV) в воде очень велика и при комнатных условиях равна в среднем 40 объемам газа на 1 объем воды, что составляет приблизительно 10% по массе. Большая растворимость всегда позволяет учащимся делать вывод, что в таком случае между растворяющимся газом и растворителем происходит химическая

реакция.

Химические свойства сернистой кислоты .

В склянку наливают 100 - 150 мл воды и пропускают в течение нескольких минут оксид серы (IV) так, чтобы раствор имел сильный запах. Такую склянку закрывают пробкой.

а) 1/3 объема пробирки заполняют водой, подкрашенной фуксином. Добавляют к подкрашенной воде сернистую кислоту и размешивают раствор. Сернистая кислота дает бесцветный раствор с органическими красителями. Нагревают раствор до кипения. Окраска фуксина снова восстанавливается. Почему?

Серная кислота

Обугливание лучины .

При опускании лучины в концентрированную серную кислоту наблюдается ее обугливание, выделяется свободный углерод. После ополаскивания в воде лучину демонстрируют учащимся, которые делают вывод, что серная кислота способна отнимать водород и кислород от сложных веществ, что объясняет некоторые правила работы с ней.

Сегодня мы начинаем знакомство с важнейшими классами неорганических соединений. Неорганические вещества по составу делятся, как вы уже знаете, на простые и сложные.


ОКСИД

КИСЛОТА

ОСНОВАНИЕ

СОЛЬ

Э х О у

Н n A

А – кислотный остаток

Ме(ОН) b

ОН – гидроксильная группа

Me n A b

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли. Мы начинаем с класса оксидов.

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентность равной 2. Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .
Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Формула

Название

Формула

Название

оксид углерода (II)

Fe 2 O 3

оксид железа (III)

оксид азота (II)

CrO 3

оксид хрома (VI)

Al 2 O 3

оксид алюминия

оксид цинка

N 2 O 5

оксид азота (V)

Mn 2 O 7

оксид марганца (VII)

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

Оксиды металлов Ме х О у

Оксиды неметаллов неМе х О у

Основные

Кислотные

Амфотерные

Кислотные

Безразличные

I, II

Ме

V-VII

Me

ZnO,BeO,Al 2 O 3 ,

Fe 2 O 3 , Cr 2 O 3

> II

неМе

I, II

неМе

CO, NO, N 2 O

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксиды металлов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII (Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):


3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III , иногда IV , а также цинк и бериллий (Например, BeO , ZnO , Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O , NO , CO ).

Вывод:характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

CrO ( II - основный);

Cr 2 O 3 ( III - амфотерный);

CrO 3 ( VII - кислотный).

Классификация оксидов

(по растворимости в воде)

Кислотные оксиды

Основные оксиды

Амфотерные оксиды

Растворимы в воде.

Исключение – SiO 2

(не растворим в воде)

В воде растворяются только оксиды щелочных и щелочноземельных металлов

(это металлы

I «А» и II «А» групп,

исключение Be , Mg )

С водой не взаимодействуют.

В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выпишите оксиды и классифицируйте их.

Получение оксидов

Тренажёр "Взаимодействие кислорода с простыми веществами"

1. Горение веществ (Окисление кислородом)

а) простых веществ

Тренажёр

2Mg +O 2 =2MgO

б) сложных веществ

2H 2 S+3O 2 =2H 2 O+2SO 2

2.Разложение сложных веществ

(используйте таблицу кислот, см. приложения)

а) солей

СОЛЬ t = ОСНОВНЫЙ ОКСИД+КИСЛОТНЫЙ ОКСИД

СaCO 3 =CaO+CO 2

б) Нерастворимых оснований

Ме(ОН) b t = Me x O y + H 2 O

Cu (OH) 2 t =CuO+H 2 O

в) кислородсодержащих кислот

Н n A = КИСЛОТНЫЙ ОКСИД + H 2 O

H 2 SO 3 =H 2 O+SO 2

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

2. Основной оксид + Кислота = Соль + Н 2 О (р. обмена)

3 K 2 O + 2 H 3 PO 4 = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Вода = Щёлочь (р. соединения)

Na 2 O + H 2 O = 2 NaOH

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

1. Кислотный оксид + Вода = Кислота (р. соединения)

С O 2 + H 2 O = H 2 CO 3 , SiO 2 – не реагирует

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

P 2 O 5 + 6 KOH = 2 K 3 PO 4 + 3 H 2 O

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

CaO + SO 2 = CaSO 3

4. Менее летучие вытесняют более летучие из их солей

CaCO 3 + SiO 2 = CaSiO 3 + CO 2

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [ Zn (OH ) 4 ] (в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

SO 3 + H 2 O = H 2 SO 4

CaO + H 2 O = Ca ( OH ) 2

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Благодаря нерастворимости и прочности оксида хрома (III) его используют и в полиграфических красках (например, для окраски денежных купюр). Вообще, оксиды многих металлов применяются в качестве пигментов для самых разнообразных красок, хотя это – далеко не единственное их применение.

Задания для закрепления

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

NaOH, AlCl 3 , K 2 O, H 2 SO 4 , SO 3 , P 2 O 5 , HNO 3 , CaO, CO.

2. Даны вещества : CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , CO 2 , N 2 O, FeO , SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3

Выберите из перечня: основные оксиды, кислотные оксиды, безразличные оксиды, амфотерные оксиды и дайте им названия .

3. Закончите УХР, укажите тип реакции, назовите продукты реакции

Na 2 O + H 2 O =

N 2 O 5 + H 2 O =

CaO + HNO 3 =

NaOH + P 2 O 5 =

K 2 O + CO 2 =

Cu(OH) 2 = ? + ?

4. Осуществите превращения по схеме:

1) K → K 2 O → KOH → K 2 SO 4

2) S→SO 2 →H 2 SO 3 →Na 2 SO 3

3) P→P 2 O 5 →H 3 PO 4 →K 3 PO 4

Изобретение относится к способам растворения оксидов урана и может быть использовано в технологии получения материалов топливного цикла, в частности для получения обогащенного урана. Согласно способу порошок оксидов урана помещают под слой воды при отношении высоты слоя воды и высоты слоя оксидов урана не менее 1,3. Под слой оксидов урана подают азотную кислоту с расходом (0,30-0,36)т HNO 3 на 1 т урана в час. Изобретение позволяет уменьшить объем газов, выходящих из реактора-растворителя и подлежащих очистке перед сбросом в атмосферу, при снижении в них содержания диоксида азота. 1 з.п. ф-лы, 1 табл.

Изобретение относится к способам растворения оксидов урана и может быть использовано в технологии получения материалов топливного цикла, в частности для получения обогащенного урана. В качестве исходного сырья для обогащения урана могут быть использованы его оксиды в виде технической закиси - окиси U 3 O 8 (2UО з +UO 2), получаемые из природного сырья. При этом перед операцией фторирования уран необходимо доочистить от сопутствующих примесей, имеющихся в рудном концентрате, в том числе от примесей, образующих летучие фториды (молибден, кремний, железо, ванадий и др.). Кроме того, необходима очистка и от примесей, попадающих в уран в процессе переработки природных руд в закись - окись урана (окалина, сметки недопрокала, графит, уголь и т.д.). Для очистки урана от примесей можно использовать экстракционную технологию очистки азотнокислых растворов урана с применением трибутилфосфата. Перед экстракцией оксиды урана необходимо растворить. Известен способ растворения оксидов урана в смеси концентрированной азотной и концентрированной соляной кислот (Уран и его соединения. Отраслевой стандарт СССР ОСТ 95175-90, с. 5). Однако в связи с большой коррозией оборудования этот метод используют только в лабораторном масштабе. Известен способ растворения закиси-окиси урана в азотной кислоте (В.М. Вдовенко. Современная радиохимия. - М., 1969, с.257) (прототип). Способ осуществляют по следующей реакции: 2U 3 О 8 +14НNО 3 =6UO 2 (NO) 3)2+7Н 2 О+NO+NO 2 . В результате реакции образуются оксид и диоксид азота, которые оказывают вредное воздействие на окружающую среду и человека. В связи с этим возникает необходимость очистки сбросных газов от оксидов азота. Диоксид азота (NO 2) - газ бурого цвета, оксид азота (NO) - бесцветный газ. Оксид азота (NO) при контакте с кислородом воздуха окисляется до NO 2 . Диоксид азота является основным компонентом в газовых сбросах, подлежащих очистке. Если растворяют сырье, содержащее свыше 80% оксида четырехвалентного урана, то образование оксидов азота в расчете на единицу сырья увеличивается по сравнению с растворением закиси-окиси урана, содержащей примерно 30% оксида четырехвалентного урана. Процесс растворения такого сырья характеризуется значительным выделением диоксида азота. В оксидном сырье содержание урана (IV) - 30%: В оксидном сырье содержание урана (IV) - 80%: При перемешивании реакционной системы, которое используют для улучшения массообмена в системе, выделение оксидов азота из реакционной смеси происходит особенно бурно. Задачей изобретения является уменьшение объема газов (оксидов азота), выходящих из реактора-растворителя и подлежащих очистке перед сбросом в атмосферу, при снижении в них содержания диоксида азота. Поставленную задачу решают тем, что в способе растворения оксидов урана, включающем их взаимодействие с азотной кислотой, порошок оксидов урана помещают под слой воды при отношении высоты слоя воды и высоты слоя оксидов урана не менее 1.3, и азотную кислоту подают под слой оксидов урана с расходом (0,3-0,36) т НNО 3 на 1 т урана в час. Реакционную смесь орошают водой в количестве, равном 10-20% водного слоя. Пример. Порошок оксидов урана помещают под слой воды. Раствор кислоты подают под слой оксидов. Подачу раствора кислоты под слой оксидов урана осуществляют по трубе, опущенной до дна реактора-растворителя. Проводят четыре серии опытов. В первой серии изменяют отношение высоты слоя воды к высоте слоя оксидов урана. Во второй серии опытов изменяют расход НNО 3 в единицу времени. В третьей серии опытов реакционную смесь перемешивают путем подачи в нее сжатого воздуха. В четвертой серии опытов над поверхностью водного слоя распыляют воду для создания в реакторе-растворителе водяного тумана. В опыте 6 первой серии слой воды над слоем оксидов урана отсутствует. Опыты проводят без подогрева реакционной смеси. Результаты опытов представлены в таблице. При подаче азотной кислоты под слой оксидов урана, находящегося под водой, растворение оксидов урана идет равномерно по всему объему. Образующийся при растворении оксидов урана диоксид азота, проходя через слой воды, взаимодействует с последней с образованием азотной кислоты, которая, в свою очередь, взаимодействует с оксидами урана; расход азотной кислоты (всего за опыт), подаваемой в реактор-растворитель, снижается. Как видно из таблицы, уменьшение объема газов, выходящих из реактора-растворителя, при снижении в них содержания диоксида азота происходит при отношении высоты слоя воды к высоте слоя оксидов урана, не менее 1,3 и расхода азотной кислоты в единицу времени 0,30-0,36 т НNО 3 / т U в час (опыты 3-5 первой серии, 1, 2 второй серии). Орошение пространства над водным слоем водой способствует дополнительному улавливанию диоксида азота и подавлению пенообразования (опыты 1, 2 четвертой серии). Отсутствие водного слоя над оксидами урана в процессе растворения (опыт 6 первой серии) или недостаточная его высота (отношение высоты слоя воды к высоте слоя оксидов урана менее 1, 3, опыты 1, 2 первой серии) приводят к увеличению газовыделения из реактора-растворителя, при этом газ имеет бурую окраску, присущую диоксиду азота. Увеличение расхода азотной кислоты в единицу времени (больше 0,36 т НNО 3 / т U в час) также приводит к сильному газовыделению, газ содержит значительное количество диоксида азота бурого цвета (опыты 3, 4 второй серии). Перемешивание реакционной смеси воздухом увеличивает общий расход азотной кислоты и ведет к сильному газовыделению (опыты 1, 2 третьей серии). Отношение высоты слоя воды к высоте слоя порошка, равное 1,30-1,36, является оптимальным с точки зрения получения раствора, пригодного по концентрации для последующей операции в технологии материалов топливного цикла - экстракции.

Формула изобретения

1. Способ растворения оксидов урана, включающий их взаимодействие с азотной кислотой, отличающийся тем, что порошок оксидов урана помещают под слой воды при отношении высоты слоя воды и высоты слоя оксидов урана не менее 1,3 и азотную кислоту подают под слой оксидов урана с расходом (0,300,36) т НNО 3 на 1 т урана в час. 2. Способ по п. 1, отличающийся тем, что реакционную смесь орошают водой в количестве, равном 10-20% водного слоя.

3

1 Московский государственный технический университет им. Н.Э. Баумана

2 Первый Московский государственный медицинский университет им. И.М. Сеченова

3 Московский педагогический государственный университет

Вопросы травления оксидных отложений с поверхности сталей, содержащих кобальт и железо, всегда имели практическую значимость и были актуальными. Изучив большое количество материала по данному вопросу, авторы констатируют, что некоторые аспекты проблемы еще не до конца изучены (к ним относятся влияние характеристик растворов электролитов, выявление механизма действия этих факторов). Оксиды кобальта и железа широко используются как катализаторы различных химических процессов (окисление метана и угарного газа, дегидрирование парафинов и др.). Их свойства зависят от особенностей поверхности, которая определяет кинетику растворения оксидов. Проведенные экспериментальные исследования по воздействию минеральных кислот (в частности, H2SO4) на скорость гетерогенной реакции (Со3О4 и Fe3O4 в кислой среде) выявили природу лимитирующей стадии, которая состоит в формировании поверхностных соединений вида – и их последующего перехода в раствор электролита. Также разработан системный анализ кривых растворения оксидов для расчета кинетических параметров: энергии активации и порядков реакции по ионам водорода и сульфат-ионам.

оксид кобальта

оксид железа

кинетика

растворение

моделирование

модель Бартона – Странского

метод Хоугена – Ватсона

1. Бокштейн Б.С., Менделев М.И., Похвиснев Ю.В. Физическая химия: термодинамика и кинетика. – М.: Изд-во «МИСИС», 2012. – 258 с.

2. Батлер Дж. Ионные равновесия. – Л.: Химия, 1973. – 448 с.

3. Дельмон Б. Кинетика гетерогенных реакций. – М.: Мир, 1972. – 555 с.

4. Барре П. Кинетика гетерогенных процессов. – М.: Мир, 1976. – 400 с.

5. Киселев М.Ю. Механизм и кинетика растворения пирита методом электрохимической хлоринации // Известия высших учебных заведений. Горный журнал. – 2010. – № 4. – С. 101–104.

6. Корценштейн Н.М., Самуйлов Е.В. Объемная конденсация при гетерогенных реакциях // Коллоидный журнал. – 2013. – Т. 75, № 1. – 84 с.

7. Колесников В.А., Капустин В.А., Капустин Ю.И., Исаев М.К., Колесников А.В. Оксиды металлов – перспективные материалы для электрохимических процессов // Стекло и керамика. – 2016. – № 12. – С. 23–28.

8. Якушева Е.А., Горичев И.Г., Атанасян Т.К., Изотов А.Д. Изучение кинетики растворения оксидов кобальта (Со3О4, Со2О3) при различных концентрациях H2SO4, HCl, ЭДТА И рН // Волгоград: Тезисы XIX Менд. съезда по общей и прикладной химии. – 2011. – Т. 3 – С. 366.

9. Якушева Е.А., Горичев И.Г., Атанасян Т.К., Лайнер Ю.А. Кинетика растворения оксидов кобальта в кислых средах // Металлы. – 2010. – № 2. – С. 21–27.

10. Якушева Е.А., Горичев И.Г., Атанасян Т.К., Плахотная О.Н., Горячева В.Н. Моделирование кинетических процессов растворения оксидов кобальта и меди в серной кислоте // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. – 2017. – № 3. – C. 124–134.

Проведенные экспериментальные исследования растворения оксидных фаз позволяют детально описать процессы поведения твердой фазы в кислой среде, объяснить явления, протекающие на поверхности оксидов, с учетом их кислотно-основных характеристик и механизма растворения, провести моделирование топохимических реакций.

Цель исследования состоит в изучении и моделировании процесса растворения Со3О4 и Fe3O4 в серной кислоте.

Материалы и методы исследования

Для исследований брали образцы массой 500 мг с d = 80÷100 мкм. Идентификацию оксидов проводили методами рентгенофазового, ИК- и термоанализами.

Для выяснения механизма растворения твердых образцов оксидов металлов в кислых средах эксперимент проводился в приборе (термостатируемый реактор объемом 0,5 л) для изучения кинетики растворения твердых образцов, исключающем влияние, каких-либо неконтролируемых факторов на изучаемое явление. Температура опыта 363 К. Эксперимент проводился при различных значениях рН и концентрациях минеральной кислоты.

Через определенные промежутки времени проводили отбор проб жидкой фазы из реакционного сосуда стеклянным фильтром Шотта. Концентрацию ионов кобальта определяли спектрофотометрически (спектрофотометр УФ-3100) с помощью роданида аммония, а железа - с помощью о-фенантролина.

Полученные экспериментальные данные по влиянию концентрации кислоты на скорость растворения оксида кобальта Co3O4 и Fe3O4 представлены на рис. 1 (точки - данные эксперимента, линии - результат моделирования). Долю растворенного вещества a рассчитывали по уравнению: a = Dt/D∞.

Рис. 1. а) зависимость доли растворенного оксида Со3О4 от времени при различных концентрациях серной кислоты (моль/л): 1 - 10,0; 2 - 5,93; 3 - 2,97; 4 - 1,0; 5 - 0,57; 6 - 0,12; Т = 363,2 К; б) зависимость доли растворенного оксида Fe3О4 от времени при различных концентрациях серной кислоты (моль/л): 1 - 10,3; 2 - 7,82; 3 - 3,86; 4 - 2,44; Т = 293 К

Результаты исследования и их обсуждение

Расчет кинетических параметров. Был проведен анализ экспериментальных кинетических данных с помощью уравнений гетерогенной кинетики, который позволил определить порядки реакций по различным ионам (ni), удельную скорость растворения (Wi), ее зависимость от концентрации раствора, а также энергии активации реакций (Еа) .

Кинетика гетерогенных реакций базируется на обязательном учете изменения поверхности частиц в процессе растворения во времени, кроме того, как правило, гетерогенные реакции характеризуются постоянством скорости во времени (1) .

В этом случае скорость растворения оксида можно представить уравнением :

где Wi - удельная скорость растворения; f(α) - функция, которая учитывает, как меняется поверхность оксида с течением времени.

Для выяснения механизма растворения и моделирования этого явления брали модель Бартона - Странского (2):

, (2)

где A - константа. Ее значение прямо пропорционально числу активных центров на поверхности одной частицы оксида.

Для нахождения значений переменных W и A использовались методы нелинейного регрессионного анализа и компьютерная программа MathCad.

Таблица 1

Удельная скорость растворения оксидов Co3O4 и Fe3O4 в зависимости от концентрации H2SO4

Из данных таблицы и рис. 2 (точки - экспериментальные данные, линии - результат моделирования по уравнению (3)) следует, что оксид кобальта Co3O4 растворяется быстрее в серной кислоте, чем оксид железа Fe3O4. Порядок реакции по ионам водорода для двух оксидов равен приблизительно 0,5. (все результаты получены на основе модели Бартона - Странского).

Рис. 2. а) зависимость логарифма скорости (lg W) от логарифма концентрации (lg C(H2SO4)) при растворении Со3О4 в серной кислоте; б) зависимость логарифма скорости (lg W) от логарифма концентрации (lg C(H2SO4)) при растворении Fe3O4 в серной кислоте

Полученные данные позволяют описать связь удельной скорости растворения оксидов Со3O4 и Fe3O4 от концентрации H2SO4 обобщенным уравнением

, (3)

где ≡, W0 - константа скорости растворения, K1, K2 - постоянные.

Моделирование механизма растворения оксидов кобальта и железа в неорганической кислоте. Растворение оксидов в кислотах происходит на поверхностных дефектах кристаллической решетки, так называемых активных центрах растворения оксидов, адсорбировавших ионы H+ и ионные пары Н+…А-.

Метод Хоугена - Ватсона позволяет провести моделирование влияния рН и концентрации кислот на скорость растворения оксидов .

В этом случае скорость растворения оксидов кобальта и железа будет выражаться уравнением :

Предположительно на поверхности оксидов образуются частицы гидроксокомплексов металлов такого же состава, что и находящиеся в растворе. Для расчета концентрации гидроксокомплексов использовали уравнения материального баланса в реакциях гидролиза по ионам водорода, кобальта и железа; уравнения гидролиза по всем ступеням для расчета констант гидролиза . Метод Хоугена - Ватсона предполагает, что зависимость концентрации ионов на поверхности оксидов и в растворе подчиняется изотерме Ленгмюра, что позволяет связать поверхностную и объемную концентрации ионов (уравнение (5)).

Зависимость удельной скорости растворения оксидов кобальта Со3О4 и Fe3O4 в разбавленной серной кислоте выражается уравнениями (5-7).

Концентрацию ионов и можно выразить через общую концентрацию ионов Co3+ и Fe3+, если установлено их содержание в растворе. В этом случае и . Тогда скорость равна

Если проводить моделирование процесса растворения оксида и принять, что ионы и выступают в качестве поверхностно-активных частиц, то зависимость скорости процесса от концентрации ионов будет выглядеть следующим образом (a1 - количество ионов в растворе).

Публикации по теме