Генетическая изменчивость. Лекция по биологии на тему "наследственность и изменчивость"

Сохранение жизни на земле обеспечивает наследственная изменчивость. Наследственность отвечает за передачу признаков из поколения в поколение, изменчивость за появление новых признаков у вида.

Симбиоз двух этих свойств очень успешен и дает возможность новому развитию организмов, расширению возможностей и сферы обитания.

Наследственная или генотипическая изменчивость определяется генетическими различиями между особями или группами особей. Генотипическая изменчивость может быть комбинативной и мутационной.

Мутационная изменчивость

Форма генотипической изменчивости. Так называют изменение генотипа, способствующее появлению новых признаков у наследственного материала.

Виды мутаций и их характеристика

Мутации бывают доминантные, проявляющиеся в первом поколении и рецессивные, полезные и вредные.

Типы мутаций различают по способу возникновения:

  • спонтанные или случайные, возникающие при нормальных условиях жизни и зависящие от внешних и внутренних факторов;
  • индуцированные, полученные с помощью мутагенов различной природы.

По характеру проявления:

  • доминантные, проявляющиеся в первом поколении;
  • рецессивные, часто понижающие жизнеспособность.

По месту возникновения:

  • генеративные - представляют собой мутации, возникающие в половых клетках или спорах и проявляющиеся через поколение;
  • соматические, наследуемые при вегетативном размножении.

По уровню возникновения:

  • генные. Их причины появления — изменение геномной последовательности нуклеотидов в ДНК;
  • хромосомные перестройки – изменения структуры хромосом в результате разрыва хромосомы;
  • геномные – изменение числа хромосом. Геном — это комплекс генов организма определенного вида.

Какую роль играют мутации в процессе эволюции

Три кита, на которых стоит эволюционный процесс – наследственность, изменчивость, отбор. Мутации служат топливом для длительной биологической эволюции живой материи и естественного отбора.

Первым звеном эволюционного процесса является микроэволюция, которая протекает внутри популяций, при скрещивании особей с различными генотипами.

Генный состав популяции меняется при естественном отборе и способствует появлению нового подвида.

Комбинативная изменчивость

Вторая форма генотипической изменчивости. Вызывается расщеплением и перекомбинацией мутаций и связана с получением новых сочетаний генов в генотипе, что приводит к появлению организмов с новыми фенотипом и различиями.

Механизмы комбинативной изменчивости:

  • взаимный обмен участками парных хромосом, приводящий к перераспределению локализованных в них генов в процессе деления клеток;
  • независимое расхождение хромосом;
  • случайное сочетание гамет при оплодотворении;
  • взаимодействие генов.

Примеры комбинативной изменчивости

Рекомбинация генов может привести к объединению признаков разных пород и сортов. Примеры:

  • появление розовых цветков бывает при скрещивании белых и красных цветков;
  • при спаривании белых и серых хомяков может появиться черное потомство;
  • группы крови также регулируются комбинативной изменчивостью.

Какие структуры клетки определяют наследственность и изменчивость

В наследственности ведущую роль из всех органоидов клетки играют хромосомы, способные к самоудвоению и формированию с помощью генов всего комплекса характерных для вида признаков.

Ядро клетки — носитель наследственной информации в молекулах ДНК. Опираясь на ядерную наследственность, которая определяет наследование почти всех компонентов, дают характеристику наследственным признакам.

Виды мутаций у человека

Человеку присущи следующие виды:

  • хромосомные, возникшие в процессе клеточного деления и изменения структуры хромосом;
  • геномные, зависящие от добавления или утраты набора хромосом;
  • случайные, появившиеся при действии неизвестного мутагена;
  • генные — это самые распространенные мутации, возникшие при выпадении нуклеотида или возникновении лишнего.

Какие мутации передаются по наследству

Наследственные мутации происходят при серьезных изменениях ДНК. Изменения и повреждения появляются на начальных этапах разделения яйцеклетки, абсолютно здоровые родительские клетки не являются гарантом отсутствия сбоя.

Хромосомные болезни делятся на два варианта:

  1. В первом варианте болезнь обусловлена количеством хромосом. Чаще всего выявляется синдром Дауна. На сегодня этот синдром считается самым изученным и проработанным из всех хромосомных аномалий.
  2. Второй вариант включает в себя заболевания, возникшие при структурных изменениях в хромосомах. К признакам данных патологий относят: задержку роста, низкий лоб, умственную отсталость, округлость кончика носа, глубокую посадку глаз, врожденные пороки сердца, раздвоенные почки и прочие.

Примеры наследственных заболеваний

Следующие заболевания передаются по наследству:

  • гемофилия;
  • альбинизм;
  • серповидно-клеточная анемия;
  • шизофрения;
  • косолапость.

Заключение

Полезность, вредность или нейтральность мутации зависит от условий, в которых живет организм. Мутация нейтральная или даже вредная для одного организма, может оказаться полезной формой существования для другого организма.

Вредность мутации, как правило, обнаруживается немедленно, а ее полезность часто определяется задним числом. Полезными считаются те мутации, которые служат популяциям источниками адаптации к изменяющимся условиям среды обитания.

Подумайте!

Вопросы

1. Какие хромосомы называют половыми?

2. Что такое аутосомы?

3. Что такое гомогаметный и гетерогаметный пол?

4. Когда происходит генетическое определение пола у человека и чем это обусловлено?

5. Какие вам известны механизмы определения пола? Приведите примеры.

6. Объясните, что такое наследование, сцепленное с полом.

7. Как наследуется дальтонизм? Какое цветоощущение будет у детей, мать которых - дальтоник, а отец имеет нормальное зрение?

Объясните с позиции генетики, почему среди мужчин гораздо больше дальтоников, чем среди женщин.

Изменчивость - одно из важнейших свойств живого, способность живых организмов существовать в различных формах, приобретать новые признаки и свойства. Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков - модификации - по наследству не передаются. Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания - на воздухе, в толще воды или на поверхности.

Под влиянием температуры окружающей среды изменяется окраска шерсти гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для окраски шерсти, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет черная шерсть.

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер, например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент - меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции - это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости норма реакции наследуется, и ее границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.



Благодаря тому, что большинство модификаций имеют приспособительное значение, они способствуют адаптации - приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость . Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретенные вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к пе-рекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей, приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качестве организма в результате образования мутаций. Впервые термин «мутация» ввел в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации - это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе. В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков У собак и кошек - это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, черная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу измененного белка.

Хромосомные мутации затрагивают значительный участок хромосомы, приводя к нарушению функционирования сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьезные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее количество хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия . Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы . Способность мутировать - это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет еще в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 -5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению числа мутаций, называют мутагенными факторами или мутагенами.

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (у-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены - это аналоги нуклеиновых кислот, перекиси, соли тяжелых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Учебник адресован учащимся 10 класса и рассчитан на преподавание предмета 1 или 2 часа в неделю.

Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

Книга:

<<< Назад
Вперед >>>

Вспомните!

Приведите примеры признаков, изменяющихся под воздействием внешней среды.

Что такое мутации?

Изменчивость – одно из важнейших свойств живого, способность живых организмов приобретать отличия от особей как других видов, так и своего вида.

Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков – модификации – по наследству не передаются (рис. 93). Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания – на воздухе, в толще воды или на её поверхности.


Рис. 93. Листья дуба, выросшие при яркой освещённости (А) и в затенённом месте (Б)


Рис. 94. Изменение окраски шерсти гималайского кролика под влиянием различных температур

Под влиянием температуры окружающей среды изменяется окраска шерсти у гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для синтеза пигмента, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет чёрная шерсть (рис. 94).

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер , например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент – меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции – это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости, норма реакции наследуется, и её границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.

Благодаря тому что большинство модификаций имеют приспособительное значение, они способствуют адаптации – приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость. Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретённые вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к перекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качеств организма в результате образования мутаций. Впервые термин «мутация» ввёл в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации – это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе (рис. 95). В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков у собак и кошек – это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, чёрная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.


Рис. 95. Овца анконской породы

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу изменённого белка.

Хромосомные мутации затрагивают значительный участок хромосомы , нарушая функционирование сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьёзные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее число хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия (рис. 96). Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы. Способность мутировать – это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет ещё в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 –5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению частоты мутаций, называют мутагенными факторами или мутагенами.


Рис. 96. Полиплоидия. Цветки хризантемы: А – диплоидная форма (2n ); Б – полиплоидная форма

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (?-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены – это аналоги нуклеиновых кислот, перекиси, соли тяжёлых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.

К группе биологических мутагенов относят чужеродную ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.

Вопросы для повторения и задания

1. Какие виды изменчивости вам известны?

2. Что такое норма реакции?

3. Объясните, почему фенотипическая изменчивость не передаётся по наследству.

4. Что такое мутации? Охарактеризуйте основные свойства мутаций.

5. Приведите классификацию мутаций по уровню изменений наследственного материала.

6. Назовите основные группы мутагенных факторов. Приведите примеры мутагенов, относящихся к каждой группе. Оцените, есть ли в окружающей вас среде мутагенные факторы. К какой группе мутагенов они относятся?

Подумайте! Выполните!

1. Как вы считаете, могут ли факторы внешней среды повлиять на развитие организма, несущего летальную мутацию?

2. Может ли комбинативная изменчивость проявиться в отсутствие полового процесса?

3. Обсудите в классе, какие существуют способы снижения действия мутагенных факторов на человека в современном мире.

4. Можете ли вы привести примеры модификаций, которые не имеют адаптивного характера?

5. Объясните человеку, незнакомому с биологией, чем мутации отличаются от модификаций.

6. Выполните исследование: «Изучение модификационной изменчивости у учащихся (на примере температуры тела и частоты пульса, периодически измеряемых на протяжении 3 суток)».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

<<< Назад
Вперед >>>

Наследственная изменчивость

Комбинативная изменчивость. Наследственную, или геноти-пическую, изменчивость подразделяют на комбинативную и мутационную.

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

    Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами - пример комбинативной изменчивости.

    Взаимный обмен участками гомологичных хромосом, или кроссинговер (см. рис. 3.10). Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

    Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутации - это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901-1903 гг. и сводятся к следующему:

    Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

    В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

    Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

    Вероятность обнаружения мутаций зависит от числа исследованных особей.

    Сходные мутации могут возникать повторно.

    Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Генные, или точковые, мутации - результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов.

Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации (повторение участка гена), вставки (появление в последовательности лишней пары нуклеотидов), делеции ("выпадение одной или более пар нуклеотидов), замены нуклеотид-ных пар (AT -> <- ГЦ; AT -> <- ; ЦГ; или AT -> <- ТА), инверсии (переворот участка гена на 180°).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.

Вместе с тем известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает заметное влияние на фенотип. Одним из примеров служит такая генетическая аномалия, как серповидноклеточная анемия. Рецессивный аллель, вызывающий в гомозиготном состоянии это наследственное заболевание, выражается в замене всего одного аминокислотного остатка в (B -цепи молекулы гемоглобина (глутаминовая кислота -» -> валин). Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и наблюдается снижение количества кислорода, переносимого кровью. Анемия вызывает физическую слабость, нарушения деятельности сердца и почек и может привести к ранней смерти людей, гомозиготных по мутантному аллелю.

Хромосомные мутации (перестройки, или аберрации) - это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов (рис. 3.13):

    нехватка, или дефишенси, - потеря концевых участков хромосомы;

    делеция - выпадение участка хромосомы в средней ее части;

    дупликация - двух- или многократное повторение генов, локализованных в определенном участке хромосомы;

    инверсия - поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;

    транслокация - изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание -синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.

3.13 . Хромосомные перестройки, изменяющие расположение генов в хромосомах.

Геномные мутации - изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия - кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, - полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии (см. § 3.3).

Анеуплоидия, или гетероплодия, - явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n - 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n - 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Спонтанные и индуцированные мутации. Спонтанными называют мутации, возникающие под влиянием неизвестных природных факторов, чаще всего как результат ошибок при воспроизведении генетического материала (ДНК или РНК). Частота спонтанного мутирования у каждого вида генетически обусловлена и поддерживается на определенном уровне.

Индуцированный мутагенез - это искусственное получение мутаций с помощью физических и химических мутагенов. Резкое увеличение частоты мутаций (в сотни раз) происходит под воздействием всех видов ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетового излучения, высоких и низких температур. К химическим мутагенам относятся такие вещества, как формалин, азотистый иприт, колхицин, кофеин, некоторые компоненты табака, лекарственных препаратов, пищевых консервантов и пестицидов. Биологическими мутагенами являются вирусы и токсины ряда плесневых грибов.

В настоящее время ведутся работы по созданию методов направленного воздействия различных мутагенов на конкретные гены. Такие исследования очень важны, поскольку искусственное получение мутаций нужных генов может иметь большое практическое значение для селекции растений, животных и микроорганизмов.

Закон гомологических рядов в наследственной изменчивости. Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости. Он был сформулирован выдающимся русским ученым Н. И. Вавиловым в 1920 г. Сущность закона заключается в следующем: виды и роды, генетически близкие, связанные друг с другом единством происхождения, характеризуются сходными рядами наследственной изменчивости. Зная, какие формы изменчивости встречаются у одного вида, можно предвидеть нахождение аналогичных форм у родственного ему вида.

В основе закона гомологических рядов фенотипической изменчивости у родственных видов лежит представление о единстве их происхождения от одного предка в процессе естественного отбора. Поскольку общие предки имели специфический набор генов, то их потомки должны обладать примерно таким же набором.

Более того, у родственных видов, имеющих общее происхождение, возникают и сходные мутации. Это означает, что у представителей разных семейств и классов растений и животных со сходным набором генов можно встретить параллелизм - гомологические ряды мутаций по морфологическим, физиологическим и биохимическим признакам и свойствам. Так, у разных классов позвоночных встречаются сходные мутации: альбинизм и отсутствие перьев у птиц, альбинизм и бесшерстность у млекопитающих, гемофилия у многих млекопитающих и человека. У растений наследственная изменчивость отмечена по таким признакам, как пленчатое или голое зерно, остистый или безостый колос и др.

Закон гомологических рядов, отражая общую закономерность мутационного процесса и формообразования организмов, представляет широкие возможности для его практического использования в сельскохозяйственном производстве, селекции, медицине. Знание характера изменчивости нескольких родственныхх видов дает возможность поиска признака, который отсутствует у одного из них, но характерен для других. Таким путем были собраны и изучены голозерные формы злаков, односемянные сорта сахарной свеклы, не нуждающиеся в прорывке, что особенно важно при механизированной обработке почв. Медицинская наука в качестве моделей для изучения болезней человека получила возможность использовать животных с гомологическими заболеваниями: это сахарный диабет крыс; врожденная глухота мышей, собак, морских свинок; катаракта глаз мышей, крыс, собак и др.

Закон гомологических рядов позволяет также предвидеть возможность появления мутаций, еще неизвестных науке, которые могут использоваться в селекции для создания новых ценных для хозяйства форм.

Типы мутаций

Вполне вероятно, что у плодовых мушек, которых облучал Мюллер, появлялось гораздо больше мутаций, чем он смог обнаружить. По определению, мутация - это любое изменение в ДНК. Это значит, что мутации могут происходить в геноме где угодно. А поскольку большую часть генома занимает «мусорная» ДНК, ничего не кодирующая, большинство мутаций остаются незамеченными.

Мутации изменяют физические свойства организма (признаки), только если они изменяют последовательность ДНК внутри гена (рис. 7.1).

Рис. 7.1. Эти три аминокислотные последовательности показывают, как маленькие изменения могут приводить к большому эффекту. Начало одной из аминокислотных цепей в нормальном белке приведено в верхнем ряду. Ниже аминокислотная цепь ненормального варианта белка гемоглобина: валин замешен на глютаминовую кислоту в шестом положении. Эта единственная замена, приводящая к мутации кодона ГАА в кодон ГУА, является причиной серповидно-клеточной анемии, выражающейся в ряде симптомов: от слабой анемии (если у индивидуума остается нормальная копия мутировавшего гена) до смерти (если у индивидуума две мутировавшие копии гена)

Хотя Мюллер индуцировал мутации у плодовых мушек, подвергая их высоким дозам облучения, мутации случаются в организме все время. Иногда это просто ошибки нормальных процессов, происходящих в клетке, а иногда - результат воздействия окружающей среды. Такие спонтанные мутации встречаются с частотами, характерными для определенного организма, иногда называемыми спонтанным фоном.

Наиболее часто случаются точковые мутации, которые изменяют всего одну пару оснований в нормальной последовательности ДНК. Их можно получить двумя путями:

1. ДНК химически модифицируется, так что одно из оснований меняется на другое. 2. Репликация ДНК работает с ошибками, вставляя ошибочное основание в цепь при синтезе ДНК.

Какова бы ни была причина их появления, точковые мутации можно разделить на два типа:

1. Транзиции . Наиболее часто встречающийся тип мутаций. При транзиции один пиримидин замещается другим пиримидином или один пурин замещается другим пурином: например, пара Г-Ц становится парой А-Т, или наоборот.

2. Трансверзии . Более редкий тип мутаций. Пурин замещается пиримидином или наоборот: например, пара А-Т становится парой Т-А или Ц-Г.

Азотистая кислота - это мутаген, который вызывает транзиции. Она конвертирует цитозин в урацил. Цитозин обычно дает пару с гуанином, но урацил - с аденином. В результате пара Ц-Г становится парой Т-А, когда А спаривается с Т в следующей репликации. Азотистая кислота оказывает такой же эффект на аденин, превращая пару А-Т в пару Ц-Г.

Другой причиной транзиций является ошибочное спаривание оснований. Это происходит, когда по какой-то причине неправильное основание встраивается в нить ДНК, затем оно образует пару с неправильным партнером (некомплементарным основанием) вместо того, с которым должно эту пару образовать. В результате во время следующего цикла репликации пара полностью меняется.

Эффект точковых мутаций зависит от того, в каком месте последовательности оснований они образуются. Поскольку изменение одной пары оснований меняет только один кодон и, следовательно, одну аминокислоту, получающийся в результате белок может быть поврежден, но может, несмотря на повреждение, сохранить часть нормальной активности.

Гораздо сильнее, чем точковые мутации, повреждают ДНК мутации сдвига рамки . Вспомните, что генетическая последовательность оснований (секвенс) считывается как последовательность неперекрывающихся триплетов (трех оснований). Это значит, что существует три пути прочтения (рамки считывания) последовательности оснований, зависящих от точки начала прочтения. Если мутация убирает или встраивает лишнее основание, она вызывает сдвиг рамки, и вся последовательность оснований прочитывается неправильно. Это значит, что изменится вся последовательность аминокислот, а получающийся белок, с большой долей вероятности, будет полностью неработающим.

Мутации сдвига рамки вызываются акридинами , химическими веществами, которые связываются с ДНК и настолько изменяют ее структуру, что основания могут быть добавлены или убраны из ДНК во время ее репликации. Эффект таких мутаций зависит от места последовательности оснований, в котором произойдет вставка (инсерция ) или выпадение (делеция ) оснований, а также от их взаимного расположения в образующейся последовательности (рис. 7.2).

Рис. 7.2. Один из способов, которым мутация сдвига рамки может влиять на считывание последовательности оснований ДНК

Еще одним типом мутаций является встраивание (инсерция) длинных фрагментов дополнительного генетического материала в геном. Встраиваются транспозирующиеся (мобильные генетические) элементы , или транспозоны , - последовательности, которые могут перемещаться из одного места ДНК в другое. Впервые транспозоны были открыты генетиком Барбарой МакКлинток (Barbara McClintock) в 1950-е годы. Это короткие элементы ДНК, которые из одной точки генома могут перепрыгнуть в другую (поэтому их часто называют «прыгающими генами»). Иногда они прихватывают с собой расположенные рядом последовательности ДНК. Обычно транспозоны состоят из одного или нескольких генов, один из которых представляет собой ген фермента транспозазы . Этот фермент требуется транспозонам для перемещения из одного места ДНК в другое внутри клетки.

Существуют также ретротранспозоны , или ретропозоны , которые сами передвигаться не могут. Вместо этого они используют свою мРНК. Она сначала копируется в ДНК, а последняя вставляется в другую точку генома. Ретротранспозоны родственны ретровирусам.

Если транспозон встраивается в ген, кодирующая последовательность оснований нарушается, и ген в большинстве случаев выключается. Транспозоны также могут нести сигналы для окончания транскрипции или трансляции, которые эффективно блокируют выражение других генов, расположенных вслед за ними. Такой эффект называется полярной мутацией .

Ретротранспозоны типичны для геномов млекопитающих. Фактически, около 40% генома состоит из таких последовательностей. Это одна из причин, по которой геном содержит так много «мусорной» ДНК. Ретротранспозоны могут быть SINE (короткими промежуточными элементами) длиной в несколько сот пар оснований пли LINE (длинными промежуточными элементами) длиной от 3000 до 8000 пар оснований. Например, человеческий геном содержит около 300 тыс. последовательностей одного типа SINE, у которых, кажется, нет другой функции, кроме саморепликации. Данные элементы также называются «эгоистической» ДНК.

В отличие от точковых мутаций мутации, вызываемые транспозонами, не могут индуцироваться мутагенами.

Точковые мутации могут ревертировать, возвращаться к исходной последовательности как за счет восстановления оригинальной последовательности ДНК, так и за счет мутаций в других местах гена, которые компенсируют действие первичной мутации.

Вставка дополнительного элемента ДНК, очевидно, может ревертировать за счет вырезания вставленного материала - точечного исключения . Делеция части гена, однако, ревертировать не может.

Мутации могут происходить в других генах, приводя к формированию обходного пути, исправляющего повреждение, вызванное начальной мутацией. В результате образуется двойной мутант, имеющий нормальный или почти нормальный фенотип. Этот феномен называется супрессией , бывающей двух типов: внегенной и внутригенной .

Внегенная супрессорная мутация подавляет действие мутации, расположенной в другом гене, иногда за счет изменения физиологических условий, при которых белок, кодируемый супрессируемым мутантом, может функционировать вновь. Бывает, что такая мутация меняет аминокислотную последовательность мутантного белка.

Внутригенная супрессорная мутация подавляет эффект мутации в гене, где она расположена, иногда восстанавливая рамку считывания, нарушенную мутацией сдвига рамки. В некоторых случаях мутация изменяет аминокислоты в сайте, который компенсирует изменение аминокислоты, вызванное первичной мутацией. Феномен также называется реверсией во втором сайте .

Не все последовательности оснований в гене подвержены мутациям в одинаковой мере. Мутации имеют тенденцию группироваться вокруг горячих точек в последовательности гена - местах, где вероятность образования мутаций в 10 или 100 раз выше, чем ожидаемая при случайном распределении. Расположение этих горячих точек различно для разных типов мутаций и мутагенов, индуцирующих их.

В бактерии E . coli , например, горячие точки встречаются там, где расположены модифицированные основания, называемые 5-метил-цитозином. Это основание иногда подвергается таутомерному сдвигу - перестройке атома водорода. В результате Г спаривается с Т вместо Ц, а после репликации образуется пара дикого типа Г-Ц и мутантная пара А-Т (в генетике диким типом называются последовательности ДНК, которые обычно встречаются в природе).

Многие мутации не дают видимого эффекта. Они называются молчащими мутациями . Иногда мутация молчит, потому что изменения не влияют на продукцию аминокислот, а иногда - поскольку, несмотря на замену аминокислоты в белке, новая аминокислота не влияет на его функцию. Это называется нейтральной заменой .

Мутация, выключающая или изменяющая функцию гена, называется прямой мутацией . Мутация, которая реактивирует или восстанавливает функцию гена за счет реверсии начальной мутации или за счет открытия обходного пути (как при реверсии во втором сайте, описанной выше), называется обратной мутацией .

Как видите, есть много различных способов классифицировать мутации, и одна и та же мутация может относиться к различным типам. Данные табл. 7.1 могут внести ясность в характеристику мутаций.

Классификация мутаций

Классификация мутаций (продолжение)

Наследственность и изменчивость представляют собой основные условия процесса эволюции. Обе эти противоположные особенности неразделимы и входят в характеристику всех живых организмов. Практически вся история науки биологии основывалась на изучении взаимодействия и значения этих особенностей. Еще в древней Греции были совершены попытки осмысления многообразия организмов. Платон, Анаксимен, Гераклит и многие другие утверждали, что все в природе меняется в результате внутренней борьбы. Какие же закономерности изменчивости и наследственности существуют? Этот вопрос изучали многие ученые на протяжении долгого времени.

Устойчивые свойства живых организмов

Еще в древности появились предположения о присущих живым существам изменчивости и наследственности. Было обращено внимание на тот факт, что при репродукции из одного поколения к другому передается ряд признаков, которые типичны для данного вида. Это было названо наследственностью.

Наряду с этим между представителями одного вида есть некоторые отличия, что было названо изменчивостью. Закономерности наследственности и изменчивости применялись уже тогда для создания иных пород животных и сортов растений благодаря Г. Менделю, который после многих экспериментов сумел их описать. В 1900 году начинает развиваться новая наука - генетика, что изучает закономерности этих двух фундаментальных свойств организмов.

Понятие генетики

Наследственностью именуют совокупность признаков, которые организмы повторяют из поколения в поколение. Особую роль здесь уделяют физиологии, химическому составу, внешнему строению и характеру обменных процессов организмов. Изменчивостью именуют явление, что противоположно наследственности и выражается в изменении комплекса признаков или образования новых свойств у организмов одного и того же вида. Сочетание этих двух свойств способствует эволюции, в результате которой у особей образуются новые признаки, которые сохраняются в следующем поколении.

Большое количество новых признаков ведет к образованию новых видов. Именно поэтому генетика направлена на изучение закономерностей изменчивости и наследственности, чтобы понять развитие эволюции, создавать новые виды живых организмов, более приспособленных к постоянно изменяющимся условиям внешней среды.

Изменчивость и ее закономерности

В генетике принято различать наследственную (генотипическую) и модификационную изменчивость. Генотипическая изменчивость характеризуется тем изменением признаков, что задает генотип и которые сохраняются несколько поколений. Ненаследственная изменчивость характеризуется теми изменениями признаков, которые вызваны влиянием внешней среды и передаются по наследству от родителей к потомству. Она не касается наследственной базы организма - генотипа - но склонна передаваться.

Закономерности модификационной изменчивости заключаются и в том, что она имеет групповую направленность. У всех представителей определенного вида обстоятельства окружающей среды способствуют возникновению похожих изменений. Модификации имеют направление, в отличие от мутаций, они подчинены закономерности, поэтому их можно предугадать. Например, при распустившихся на деревьях листьях температура воздуха в ночное время была отрицательной, в результате этого утром все они приобретут красноватый оттенок. Благодаря модификациям у особей происходит адекватная реакция на изменения факторов окружающей среды, поэтому они быстрее к ней адаптируются, чтобы уцелеть и оставить приплод.

Нормы реакции

Ненаследственная изменчивость подчиняется закономерностям. Статистические закономерности модификационной изменчивости заключаются в том, что ее границы зависят от генотипа, они именуются нормами реакции (НР). Она имеет границы для каждого из признаков. Узкая НР обуславливает те признаки, от которых зависит жизнеспособность организма, а широкая НР играет немаловажную роль для спасения вида.

Особью наследуется, скорее всего, способность его генотипа вследствие взаимодействия с окружающей средой создавать определенный фенотип. Также статистические закономерности изменчивости ненаследственной обуславливают наличие признаков, которые практически в полном объеме определяет генотип. Например, количество конечностей, расположение глаз и так далее.

На определение количественных признаков оказывает влияние окружающая среда. Для того чтобы изучить изменчивость определенного признака, генетиками составляется так называемый вариационный ряд, который состоит из последовательных количественных показателей определенного признака, что расположены по возрастанию или убыванию. Длина такого ряда говорит о границах ненаследственной изменчивости, зависит она от стабильности условий окружающей среды.

Организм являет собой открытую конструкцию, наследственность реализуется здесь при помощи взаимодействия генотипа с внешней средой. У представителей одинаковых генотипов в разных условиях внешней среды могут образовываться различные фенотипы.

Изменчивость наследственная

Наследственная делится на мутационную (МИ) и комбинированную (КИ). Здесь вступают в силу основные закономерности изменчивости. КИ характеризуется тем, что при спаривании отличных друг от друга по генотипу гамет появляются новые генотипы, которых не было у родителей. Например, дети никогда не повторяют полностью родителей, они получают генотип, который состоит из комбинации генов двух предков. Происходит это четырьмя путями. Первый путь - расставание хромосом при редукционном делении клетки, второй - физический обмен участками хромосом в мейозе, и третий путь - невольные комбинации гамет при оплодотворении, и последний - взаимодействие генов.

Мутационная наследственность

Мутации представляют собой перевоплощения генотипа, включая целые хромосомы или отдельные гены, которые возникают случайно и имеют стойкий характер. Они бывают крупными (альбинизм, коротконосость и прочее) и мелкими. Также они подразделяются на несколько видов: геномные, хромосомные и генные мутации.

Мутации генома и хромосом

Данный вид мутаций характеризуется изменением количества хромосом. У некоторых особей наблюдается полиплоидия - изменение кратного количества хромосом. Так, у таких организмов хромосомный набор в клетках повторяется не два, а намного больше раз. Это происходит в результате нарушения протекания митоза или мейоза, когда разрушается цепь деления, двойные хромосомы не расходятся, а остаются внутри клетки, вследствие этого образуются гаметы с двойным набором информации. Если такая гамета сольется с нормальной, то у потомка будет наблюдаться тройное количество хромосом.

На этом закономерности изменчивости не исчерпываются. Бывает, что у особи наблюдается перестройка хромосом. Некоторые ее участки изменяют свое положение, они или теряются, или удваиваются. Так происходит мутация хромосом.

Мутации генов

Данный вид мутаций связан с изменением состава или порядка нуклеотидов в границах гена. Он может быть потерян или заменен другим, также может наблюдаться образование лишнего нуклеотида. Такие мутации приводят к остановке работы гена, в результате чего не появляются определенные РНК и белок, или же белок приобретает другие свойства, что приводит к изменению фенотипа. Генные мутации очень важны, поскольку с их помощью появляются новые аллели.

и генеративные

Закономерности изменчивости организмов заключаются и в том, что некоторые мутации происходят только в клетках половых, поэтому фенотипы образуются только у потомства. Они именуются генеративными.

В клетках соматические мутации также могут образовываться. В этом случае они не передаются потомкам при размножении. Но если размножение бесполое, то мутации потомству могут быть переданы. Они именуются соматическими.

Свойства мутаций

Мутациям свойственно стойко передаваться по наследству. Их значение в процессе эволюции очень велико. Закономерности изменчивости заключаются в том, что только наследственные мутации могут быть переданы следующим поколениям, если они будут благополучно размножаться и выживать с этими признаками.

Все изменения могут быть вызваны как внешними, так и внутренними факторами. Скачки температуры, увядание клеток, влияние различных веществ, ультрафиолета - все это может спровоцировать мутации ДНК и даже хромосом.

Изменения появляются внезапно, в некоторых случаях это представляет вред для организма, поскольку вмешиваются в генотип, который устанавливался большое количество времени. Мутации не имеют направления, они могут повторяться, при этом подвергаться изменению может любой ген, приводя к трансформации как небольших, так и жизненно важных признаков. Один и тот же среды может приводить к самым разным изменениям, которые предвидеть практически невозможно. Поэтому важное значение для нас сегодня имеет генетика, закономерности изменчивости и наследственности играют немалую роль в процессе эволюции.

Таким образом, носителями являются гены. При этом конкретный ген отвечает за определенные признаки. Последний определяет какое-либо качество организма: физиологическое, биохимическое или морфологическое. По этому качеству отличают одно живое существо от другого. Комплекс генов именуется генотипом, а комплекс признаков - фенотипом.

В природе существуют определенные закономерности изменчивости и наследственности, благодаря которым живые организмы приспосабливаются к быстроменяющимся условиям окружающей среды. Мутации могут образовываться на разных участках ДНК, затрагивать гены и хромосомы. В результате этого мы имеет огромную классификацию живых организмов.

Публикации по теме